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A natural formulation for many statistical problems Is one combining Bayesian, 

sequential and decision-theoretic aspects. For the problem of deciding the sign 

of a normal mean, Chernoff (1961. 1965a. 1965b). Breakwell & Chernoff (1964) and 

Bather (1962) develop an approach to such a formulation where sums of successive 

observations are replaced by a continuous time Wiener process. Subsequently, 

this approach has been enyployed by Chernoff & Ray (1965), Chernoff (1967), Bather 

& Chernoff (1967a. 1967b). Feder & Stroud (1971), Petkau (1978), and Chernoff & 

Petkau (1981) In a wide variety of problems. 

The continuous time problem has a number of fundamental advantages over the 

discrete time problem for which it Is an approximation. First, the continuous 

time problem can be normalized so that many of the parameters which appear in 

the original (discrete time) problem are eliminated; thus, a single continuous 

time problem corresponds to an entire class°of discrete time problems. Second, 

the continous time problem is equivalent to an optimal stopping problem for a 

Wiener process where the cost associated with stopping depends only on the 

stopping point; any such problem Is related to a problem in analysis, a free 

boundary problem (FBP) involving the heat equation. This relationship 

facilitates obtaining bounds and asymptotic approximations for the solution 

of the continuous time problem. 

While these bounds and asymptotic approximations provide valuable insight. 

In most problems they do not provide an adequate approximation to the solution. 

Techniques are required which will provide numerical descriptions of the solution 

of the continuous time problem; this solution will then provide approximations 

to the solutions of an entire class of discrete time problems. 



In this paper we will describe simple numerical techniques which can be 

easily employed to obtain explicit descriptions of .the solutions of such 

continuous time problems. The basic Idea is straightforward: the Wiener process 

Is approximated by a discrete time process and backward induction Is employed 

to solve the optimal stopping problem for this new process. The techniques will 

be illustrated In a number of problems thereby clearly Indicating their 

properties. Some of these problems have and some have not been 

previously Investigated in the literature. 

The reader may feel that the path that has Just been traced Is somewhat 

circular. He begin with a discrete time Bayes sequential decision (optimal 

stopping) problem which can be solved by backward induction and approximate it by a 

continuous time optimal stopping problem for a Wiener process which we propose to 

solve by applying backward Induction to a discrete time version of the Wiener process. 

However, the situation is not quite so empty.  First, as already indicated, the 

continuous time problem allows one to derive valuable characteristics of the 

solution Including asymptotic approximations. Second, there are available 

excellent approximations to the difference between the solution of the continuous 

time problem and those of its various discrete time versions. Thus, we can solve 

the optimal stopping problem for a particular discrete time version and use the 

solution, properly adjusted, to approximate that of the continuous time problem. 

This approximation can then itself be adjusted further to approximate the solution 

of any of the original discrete time problems. Thus, the single backward 

induction applied to the discrete time version of the Wiener process provides 

solutions for the normalized continuous time problem and all of Its discrete time 

versions. 

In this paper we will focus on obtaining numerical solutions for continuous 

time problems. The question of whether these continuous time solutions, when 

properly adjusted, yield accurate approximations to the solutions of the original 

discrete time problems must be considered on a problem-by-problem basis. We 

merely mention here that this question has been considered in detail for a 

problem involving Bernoulli data by Petkau (1978) and for a different problem 

Involving normal data by Chernoff and Petkau (1981); In both cases, the adjusted 

continuous time solutions provided accurate approximations to the solutions of the 

original discrete time problems. 



2. PROBLEMS UNDER INVESTIGATION 

The techniques to be described can be applied to obtain a nuroerlcal 

description of the solution of our special class of optimal stopping 

problems Involving zero drift Wiener processes. With one exception, the 

normalized forms of the continuous time Bayes sequential decision 

problems to be considered In this paper are special cases of the 

following optimal stopping problem: Given a Wiener process (Y(s): s >^ s,) In the 

-s scale, described by E(dY(s)) = 0 and Var(dY(s)} " -ds and starting at 

Y(sjj) = yp (SQ > Sj). find a stopping time S to minimize the risk. E{d(Y(S),S)); 

here d(y,s) Is the cost associated with stopping at the point (y.s) and stopping 

is enforced at the end of the problem, namely, when s ° s.. 

Some characteristics of the solution of such an optimal stopping problem 

can now be described. If we define dCy^.s^) = Inf bCy^j.Sjj), where b(yQ,SQ) Is 

the risk associated with a particular stopping time (procedure) and the Infimum 

is taken over all procedures, then since Y(s) Is a process of Independent 

Increments, d(y,s) represents the best that can be achieved once (y,s) has been 

reached, irrespective ' of how It was reached. Thus, the rule "Stop as soon as 

d(Y(s),s) = d(Y{s),s)," which yields an optimal procedure If one exists, can be 

described by the continuation set C = ((y.s): d{y,s) < d(y,s)) or by Its complement, 

the stopping set IS = c'' =  {(y,s): d(y,s) = d(y,s)}; attention can therefore be 

restricted to procedures which can be so described. Note that this character- 

ization does not depend upon the initial point (VQISQ) and thus yields the 

solution for all initial points simultaneously. Chernoff (1968, 1972) has 

demonstrated that one should expect the solution (d,C) of the stopping problem 

to be a solution of the following free boundary problem (FBP) involving the heat 

equation (ac denotes the boundary of the set C): 

(2.1) 

*dyy(y.s) ■ d5(y,s)   for (y.s) E C 

d(y,s) - d(y,s)    for (y.s) E S 

<ly(y.s) " dy(y.s)   for (y.s) E 3C i 

this relationship enables one to obtain bounds and asymptotic approximations for 

the solution. One particular result Is that for any such stopping problem one 

should never stop at points (y.s) where H(y,s) = "id y(y.s) - d (y.s) < 0; if one 

thinks of the optimal stopping problem as a ganbling problem, then H(y.s) can be 

heuristlcally thought of as the "rate of losing* at the point (y.s). Further, it 

Is obvious from (2.1) that changing the stopping cost function d(y,s) by adding 

to It any solution of the heat equation leaves the solution S of the FBP unchanged. 

Some special cases of this general optimal stopping problem which have 

already been Investigated In the literature are now described. 

Example 2.1. Testing for the sign of a normal mean. Chernoff (1961). X,, X-. ... 

are Independent N(p,o^) random variables (o^ known). It Is desired to test 

H.:M ^ 0 versus H^: ii < 0 . where the cost of a wrong decision Is klpj and the 

cost of observing n X's Is en. If the parameter w Is assumed to have a normal 

prior, what Is the Bayes sequential strategy? A normalized form of the 

continuous time version of this problem Is a special case of the general 

stopping problem formulated above with 

(2.2) 

here 

d(y.s) - s"' + $** *(y/s'^)     for s > 0 ; 



(2.3) 

t(x) = ♦(x) - xd - *(x)) 

= ^(-x) 

for   X > 0 , 

for   X < 0 , 

while ^ and * are the standard normal density and cumulative respectively.    For 

further detail,  the reader is referred to Chernoff (1961,  1965a,  1965b, 1972), 

Breakwell & Chernoff (1964) and Bather (1962).    Closely related work appears In 

Llndley (1961), MorlgutI S Robblns (1962) and Lindley ft Barnett (1965).    We will 

refer to this problem as the sequential analysis problem. 

Example 2.2.    One-armed bandit problem. Chernoff ft Ray (1965).    X,, X2,..., X   are 

Independent N{\i,a^)  random variables  (o^ known).    The payoff for stopping at n 1 N 

Is X, + X„ + + X^. When v  has a normal prior, the normalized continuous time 

version leads to the special case 

(2.4) d(y.s) = -y/s for s > 1 

The variation where X^  Is either a or b with unknown probabilities p and 1 - p and 

p has a beta prior Is relevant to (a) a one-armed bandit problem with a limited 

nuiriber of pulls available, (b) the rectified sampling inspection problem In which 

context this problem first appeared, and (c) clinical  trials comparing a new 

treatment against a known one with a finite horizon of patients to be treated, 

Chernoff (1967).     For discussion of the continuous time version, see Chernoff 

(1967,1972). 

Example 2.3.    Sequential medical trials Involving paired data. Anscombe (1963). 

There Is a horizon of N patients to be treated with one of two available treatments. 

In the initial (experimental) phase, n pairs of patients are treated sequentially 

with different treatments randomly assigned to-the patients in each pair; the 

remaining N - 2n patients are all assigned to the treatment which is Inferred to 

be superior.    The differences In the values of the outcomes for each pair are 

Independent H{v,o^)  random variables (o' known) and the cost of treating any 

patient with the inferior treatment is   proportional   to  |ii|.    If the parameter 

n is assumed to have a normal prior, what is the Bayes sequential strategy? 

The continuous time version, recently studied in detail by Chernoff ft Petkau 

(1981), leads to the special case 

(2.5) d(y.s) = -(1 - 1/s)   |y| for   s > 1  . 
-S'^'iijSI 

Related work appears  in Begg ft Hehta (1979). Petkau (1980). Lai, Levin. *~" 

Robblns ft Siegmund (1980) and L«1. Robbins ft Slegmund (1983).    We will *"" 

refer to this problem as the Anscombe problem. 

Example 2.4.    Sequential medical trials for comparing an experimental with a 

standard treatment. Petkau (1978).    There is a horizon of N patients to be 

treated with either the standard treatment, characterized by a known probability 

of success PQ, or the experimental  treatment, characterized by an unknown 

probability of success p.    Sampling Is to be initiated with the experimental 

treatment and continued with this treatment during an experimental period until 

a decision is made in favor of one of the treatments; the remaining patients 

are then treated with the favored treatment.    There Is a cost Incurred for each 

unsuccessful application of either treatment as well as a cost of experimentation 

which Is incurred for each patient treated during the experimental period.    If 

a beta prior is assumed for the parameter p, what is the optimal design?    A 

continuous time version of this problem leads to the special case (here Y is a 

normalized cost of experimentation parameter) 

(2.6) 
d(y,s) = Y/S - y 

= Y/S - y/s 

for   y >^ 0, s >^ 1   , 

for   y < 0, s >^ 1  . 



The above examples arise naturally In the statistical problems described. 

In each case, closed form solutions are unavailable; complete descriptions of 

optimal procedures are available only through numerical  techniques such as those 

to be described.    In order, to fully Illustrate the properties of these numerical 

techniques, a problem of the same general  form as Examples 2.1 - 2.4 but for 

which the solution is available in closed form will be useful.    The following 

modification of Example 2.3 will serve our purpose. 

Example 2.5.    Modified Ansconfce problem.    This artificial problem corresponds 

to the special case 

(2.7) d(y.s) = -(1 -  1/s)   jy|  - 2s\(;(s)/s'*) for s > 1   , 

where y(s)  is defined by 

(2.8) 1 - ♦(y(s)/s'*)  =    5-1/2 

It is easily verified (see.  for example. Chernoff,  1968.  1972)  that the optin 

solution (d.C)  for this problem is given by 

(2.9) 
C =  ((y.s):   |yj   < y(s)   .    s > 1}   . 

d = -|y| - 2s\(y/s'*) for (y.s) c C. 

where t is defined in (2.3); of course, d H d for (y.s) c S = c'^. 

The statistical problems described above all lead to special cases of the 

general optimal stopping problem for a zero drift Wiener process in the (y.s) 

scale which was described in the first paragraph of this section. While these 

statistical problems will be the main Interest In this paper, the techniques 

to be described apply equally well to a class of gambling problems, the general 

case of which can be described as follows: Given a Wiener process {X(t): t < t,) 

In the t scale, described by E(dX(t)} • 0 and Var{dX(t)) = dt and starting at 

X(t„) = XQ (tjj < t,), find a stopping time T to maximize the expected reward 

£(g(X(T), T)): here g(x.t) Is the reward associated with stopping at the point 

(x.t) and stopping is enforced at the end of the problem, namely, when t = t,. 

The solution of any such problem will not depend upon the Initial point 

(x^.tg) and we will denote the optimal reward at (x.t) by g(x.t). For a detailed 

study of this general problem, the Interested reader Is referred to Van Moerbeke 

(1974a, 1974b, 1975) and Shiryaev (1978). Two results of particular Interest 

are that the solution of this stopping problem can be represented as the 

solution of a free boundary problem for the backward heat equation, 

'^"xx * "t ~ ^' '"'' ^^^^  °"* should never stop at points (x,t) where H(x.t) s 

'sgjjj((x,t) + g^(x.t) > 0; H(x.t) can be thought of as the payoff rate or "rate 

of winning" at the point (x.t). Again, changing the stopping reward function 

g(x,t) by adding to it any solution of the backward heat equation leaves the 

solution S of the FBP unchanged. 

It should not be surprising that there is a close relation between this 

general optimal stopping problem for a zero drift Wiener process in the (x,t) 

scale and the general problem in the (y.s) scale which was defined earlier; a 

simple change of variables transforms one into the other (see, for example. 

Van Moerbeke. 1974a. p.547). In spite of this close relation, we will prefer 

to work with the statistical problems in the (y,s) scale and the gambling 

problems In the (x.t) scale since these are the natural scales. ' 

Two special cases of this general optimal stopping problem In the (x,t) 

scale will be considered. 
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Example 2.6.    Van Moerbeke'5 gantUng problem. Van Hoerbeke (1974a,  1974b). 

A gaiitler loses an amount of money equal to the amount of time the process spends 

In the region x < 0 and wins an amount of money equal  to the amount of time spent 

In the region x >0.    If the gantler Is permitted to stop the process at any time 

t, 0 < t _< 1, what Is the optimal strategy? 

For this problem,the payoff rate H(x,t) = + 1 depending on whether the 

process Is In the positive or negative x half-plane; clearly the gambler should 

never stop In the win region, x>0,    A naive gairbler would stop as soon as the 

lose region, x < 0, was entered, but It may pay to lose a bit now in the hope 

of winning in the more remote future. The reward function described above differs 

from 

(2.10) 
g(x.t) = 1 - t + 2x' 

« 1 - t 

for   X > 0 , 

for   X < 0 , 

by a solution of the backward heat equation. Hence this problem is equivalent 

to the special case with reward function g(x,t). Van Hoerbeke has established 

that the optimal solution (g,C) for this problem is given by 

C = {(x.t): X > -a(l - t)**. t < 1) , 

(2.11)       9{x.t) = 2(1 - t)(1 +w2) + a(l - t){w*(w) 

- (1 + w2)[l - t(w)])/»(a) for (x.t) t C. 

where w = x/(l -  t)*" and a ^ 0.5061  is the solution of a»(a) = ♦(a). 

Example 2.7.    The S /n problem with finite horizon ■    In the infinite horizon 

version of this problem a gantler is allowed to view successively as many terms 

as he pleases of a sequence X,, Xy,  ... of Independent random variables with 

cornnon distribution F.     If upon stopping at time n the gairbler receives a 

payoff of Sjj/n, where S    = X, + ... + X  , what is the optimal strategy? 

This problem was first studied by Chow ft Robblns  (1965), who proved the 

existence of an optimal stopping rule when F Is a two point distribution. 

They also proved the intuitively obvious but nontrlvial  fact that an 

optimal  rule is to stop at the first n at which S   » B  ,   and provided 

a method of calculating the sequence of nunfcers e    in principle.    Ovoretsky 

(1965) and Teicher S Wolfowitz (1966) proved that the same result holds for 

any F with finite second moment (the B'S depend upon F, of course).    Ovoretsky 

also showed that if F has zero mean and unit variance then 0.32 ...  < e /n^ < 
— n   — 

4.06 ... for n sufficiently large, and conjectured that lim eJn    existed. 

This conjecture was proved independently by Taylor (1968), Walker (1969), and 

Shepp (1969), who found 0.8399 ... as the limiting value. They pointed out 

that considered for large values of n, this problem would be equivalent to Its 

Wiener process analogue, the special case where for 0 < t < •> 

g(x,t) = x/t ; 

the optimal solution (g,C) for this problem is given by 

C = {(x,t): X < at** , 0 < t < -) 

g(x.t) = (1 - a')t"^t(w)/*(w) for (x,t) E C, 

where w = x/t** and a = 0.8399 is the solution of a*(or) = (1 - a')*(a) . 

The finite horizon variation of this problem, In which the gambler is 

permitted to observe at most N terms of the sequence X|, X-,..., has been 

considered by J. L. Snell & H. Tisdale (1978). A normalized form of the 



12 

continuous time version of this problem leads to the special case where for 

0 < t < 1. 

(2.12) g{x.t) = x/t ; 

it is this particular version of the S^/n problem which will be considered here. 

In the remainder of this section we briefly preview the rest of this 

paper. In Section 3, the backward induction methods for the normal and binomial 

discrete time versions are described together with alternative versions of 

continuity corrections. In Section 4. the examples we have presented are 

discussed to Illustrate and evaluate the continuity corrections. The modified 

Anscombe problem. Example 2.5. for which the solution is known Illustrates the 

case of a symmetric region where the boundary is monotone. Example 2.6, Van 

Moerbeke's gambling problem. Illustrates the case where truncation may be used 

to capltaH2e on one-sided stopping regions. Example 2.7 illustrates the case 

where the boundary is not monotone. 

In Section 5, the problem of computing solutions over large ranges of s 

values is addressed by a technique of changing increments in s. This method is 

used to present numerical results for the important classical sequential 

analysis problem. Example 2.1. and one-armed bandit problem. Example 2.2. 

Finally In Section 6, a new example is Introduced. This is the Anscombe 

problem with ethical cost considerations. It is new in two senses. It has not 

been treated before In the literature. It is different from Examples 2.1 to 

2.7 in that the posterior risk on stopping depends not only on the current 

position of the Wiener process but also on the past history. This problem 

can still be solved numerically by backward Induction or it can be transformed 

into a stopping problem of the same form as the others. 
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3.  NUMERICAL TECHNIQUES 

In this section we describe the techniques to be employed In obtaining 

numerical descriptions of the solution of the general optimal stopping problem 

for a zero drift Wiener process In the (y,s) scale defined at the beginning of 

the previous section. As already Indicated, the basic idea is straighforward: 

the process Y(s) which is a Wiener process In the -s scale, is approximated by 

a discrete time process, and backward Induction Is used to solve the optimal 

stopping problem for this new process. Using asymptotic results concerning 

the relation of the solution of the discrete time problem to the solution of 

the Wiener process problem, the discrete time solution can then be adjusted 

to provide an approximation to the solution of the continuous time problem. 

A natural approximation to the continuous time problem results If one 

considers the discrete time problem where one is permitted to stop only on the 

discrete set of possible values of s. (s^ + 1A. 1 - 0. 1, ..,) . While the 

value of s decreases by A between these successive possible stopping times. 

the process Y(s) changes by a normal deviate with mean 0 and variance &; In 

effect, the Wiener process is being approximated by an appropriate sum of 

Independent normal random variables. At any point (y,s) where s corresponds to 

a permissible stopping time, the choice between either stopping at this point 

or continuing on to the next permissible stopping time and proceeding optimally 

thereafter Is made on the basis of which of d(y.s) or E(d(Y(s - A),S - A) |Y(s) °y) 

is smaller. Thus, the backward induction algorithm which yields the optimal 

solution to the stopping problem for this dlscreter time prociess Is specified by 

u(y.s) • d(y,s) 

(3.1) 
- m1n[d(y.s). E(d(y + ZA"*. S - A))] 

for s » s^ , 

for s > Sj , 
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where Z represents a standard normal deviate. 

This approximation Is a natural one since the discrete time problem Is 

embedded within the continuous time problem; the former corresponds to the 

special case of the latter where one is permitted to stop only on the discrete 

set of values of s given by (s^ + la, 1 » 0, 1, ...). From this point of view 

it Is obvioOs that the continuous time problem is more favorable. For a sequence 

of values of a approaching 0, the solution of the discrete time problem (both 

the continuation region and the risk) would approach that of the continuous 

time problem in a monotonic fashion. 

I    Note that the evaluation of the expectation appearing in (3.1) would 

require a numerical Integration for which purpose the y axis would also be 

discretlzed. Thus, in practice, the backward induction is carried out on a 

grid of (y,s) points each of which is classified as either a stopping or 

continuation point during the course of the computation. 

How would one use the results of the backward induction algorithm (3.1) 

to obtain an approximation to the boundary y(s) of the continuation region for 

the continuous time problem? Chernoff (1965b) presents a detailed investigation 

of the relation of this discrete time problem to the continuous time problem; 

the results lead to two distinct methods of approximating the continuous time 

boundary y(s). 

The first method consists of simply adjusting the boundary of the optimal 

continuation region for the discrete time problem; this boundary Is determined 

by the "break-even" points y^(s) at which d(y,s) = E(d(y + Za**, s - a)) 

Chernoff (1965b) has established that 

(3»2) y(i) =yjs)+ka^ + o(a^) . 
A — 

15 

where the sign is determined so as to make the continuation region for the 

Wiener process problem larger and k = -;(!j)//27 = 0.5826, where c is the 

Riemann zeta function.    The first method should then be clear:  For a (reasonably 

small) value a, carry out the backward induction algorithm and obtain the 

break-even points y^(s) at each fixed value of s.    Then use the correction 

Implied by (3.Z) to approximate y(s).    Note that since the entire backward 

induction is carried out on a grid of (y,s) points,  the break-even points y (s) 
a 

would only be obtained approximately, presumably by some interpolation or 

extrapolation scheme (Day, 1969, provides the details of a scheme for carrying 

out the backward induction together with an interpolation scheme for approx- 

imating the break-even points for the discrete time version of Example 2.3). 

He shall call this the adjustment method and label it A. 

For the second method, the break-even points need not be approximated. 

Chernoff (•1965b) has established that, in the neighbourhood of the boundary 

of the optimal continuation region for the continuous time problem, the 

difference between the optimal risk for the discrete time problem and the cost 

for stopping behaves asymptotically (as a -♦ 0), at every fixed value of s, 

like a simple function which depends upon the (unknown) location of the 

continuous time boundary at this value of s and whose form he provides; indeed, 

it is this result which leads to the relationship (3.2) . This result forms 

the basis of the second method: For a (reasonably small) value of a, carry out 

the backward induction algorithm to obtain the optimal risk for the discrete 

time problem at each grid point. Then, at each fixed value of s, fit the known 

values of the difference between the optimal risk for the discrete time problem 

and the cost for stopping at those grid points in the interior of the continuation 

region (but adjacent to the boundary) to the relationship provided by Chernoff 
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(1965b) in order to approximate (or, more precisely, to extrapolate to) the 

location of the continuous time boundary (further details for a closely related 

scheme will be provided below). Ue shall call this the extrapolation method 

and label it E. 

While the discrete time process with normal increments Is the most natural 

approximation to the Wiener process, we propose to use the simpler approximation 

in which the Wiener process Y is replaced by the simple random waU process 

where Y(s - A) = Y(s) + fl'', each with probability 1/2. This approximation to the 

Wiener process results In a very simple corresponding backward induction 

algorithm; the standard normal deviate Z in (3.1) is replaced by a random 

variable which is + 1, each with probability 1/i leading to the algorithm 

d(y,s) = d(y,s) 

(3.3). 
for s - s,. 

min[d(y.s),{d(y +A**, s- A) + d(y- A**, S- A))/2]   for s > s, 

Obviously,  this algorithm is considerably simpler to implement than that 

specified by (3.1) which requires a numerical  integration to evaluate the risic 

at each grid point (y.s).    As was the case with the previous approximation, 

the bacicward Induction is carried out on a grid of (y,s) points;  in the present 

approximation, however, the discretization of the y-axis is necessarily related 

to the discretization of the s-axis.    Whereas the Wiener process was previously 

being approximated by the sum of its increments,  in this simpler approximation 

the increment of the Wiener process  is  itself replaced by a Bernoulli  random 

variable. While the second moment of the Bernoulli variable is chosen to match 

that of the increment  it Is  replacing,  the higher   even    moments do not match. 

In general,  therefore,  it Is not clear whether this discrete problem is more 
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or less favorable than the Wiener process problem. Further^ while the solution 

of this discrete time problem (both the continuation region and the risk) would 

also approach that of the continuous problem as A approached 0, one would not 

necessarily expect the behavior to be monotone. 

Chernoff & Petkau (1976) have Investigated the relation of this discrete 

time simple random walk problem to the original continuous time problem. They 

establish that the appropriate analogue of (3.2) for the present case Is 

(3.4) y(s) = y^(s) + 0.5A'^+O(A'*), 

and also provide the form of the simple function which describes, for each 

fixed value of s, the asymptotic (as A -» 0) behavior of the difference between 

the optimal  risk for this discrete time problem and the cost for stopping In 

the neighbourhood of the boundary of the optimal continuation region for the 

continuous time problem.    These results enable the same two general approaches 

described above of approximating the continuous time boundary to be used In 

connection with the backward Induction algorithm (3.3).    Further details of 

these methods in the context of this discrete time simple random walk 

approximation will now be provided.    For simplicity of discussion, we will 

suppose throughout the remainder of this section that we are In the case of a 

one-sided problem where the optimal continuation region for the continuous 

time problem is given by C =  ((y,s): s > s, and y < y(s))  , where y(s) Is 

monotonically Increasing in s. 

To implement the adjustment approach, the break-even points y.(s) at 
a 

which d(y,s) = d*(y,s) where 

(3.5) d*(y.s) = {d(y+A**, s- A) + d(y- A**, s-A))/2 
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must be approximated at each fixed value of s e (s, + 1A: 1 = 1.2, ...) . 

In carrying out the algorithm (3.3) at s, one would discover the grid level 

^0 "  ^0^^' **" ^^^ ^ '^^^^  determined by the condition that the grid points 

(XQ - JA , S) = (yj.s) say, be classified as continuation points (d* < d) 

for J =0,1, ... and as stopping points (d* > d) for j = -1,-2, .... The 

grid level yjj(s) might be called the highest, or last, continuation level 

at s; the sequence of highest continuation levels would be nondecreasing 

and a naive approximation to y^(s), the break-even point at s, would be 

provided by y(j(s). Note, however, that In the case of this discrete time 

random walk approximation, the grid being employed has a vertical spacing 

of A which is coarse compared to the horizontal spacing of A; for reasonably 

small values of fl, therefore, as s increases successive values of yn{s) 

would often be Identical and this naive approach would produce a series of 

steps as an approximation to the gradually Increasing sequence of break-even 

points. One might attempt to smooth the sequence of levels yg(s) to form 

an Improved (hopefully) approximation to the sequence of break-even points 

y^(s). This could be accomplished by the crude approach In which y.(s) Is 

approximated by yQ(s) only at those values on the s grid where the last 

continuation level changes, that Is, yQ(s) > yQ(s - fi); line segments 

connecting these approximation points could then be used to approximate 

y^(s) at any Intermediate value of s. The approximation can then be adjusted 

by 0.5fl^ to provide the crude adjusted estimate of y(s); this method is 

labelled CA. 

The above method of approximating the break-even points nay seem crude 

since the computed values of the risk at the grid points are completely 

Ignored, except that they are employed to classify the grid points as either 
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stopping or continuation points  .    In carrying out the algorithm (3.3). the 

value of d-d* is determined at each grid point; at each fixed value of s then, 

the values of d-d* at the grid points could be used in an interpolation to 

approximate the break-even point y^^ts).    The simplest such scheme would be a 

linear one based on the values of d-d* at y(j(s) and y.,(s) = y„(s) + A**, the 

grid levels between which it Is known that the break-even point y.(s)  lies. 

Alternately, one might employ a quadratic Interpolation scheme based on the 

values of d-d* at either y,(s). yp(s) and y.,(s) or ygCs). y.,(s) and y_2(s). 

Day (1969, p.306) points out that for two-sided problems with normal 

Increments where d-d* is syimietrlc qnd convex (in y at each s) and has a 

monotone decreasing second derivative, these two quadratic interpolations 

will actually yield an underestimate and an overestimate respectively of the 

break-even point y.(s)-    This suggests, and we shall use, the average of the 

two Interpolated values as the approximation.    The estimates of y.(s) 
A \, 

described here can be adjusted by 0.5A^ to give variations of A which may be 

called LA and QA for linear adjusted and quadratic adjusted. 

Each of the above adjustment methods involves adjusting an estimate of 

y (s).    It is possible, at considerable computational expense,  to approximate 

the points y.(s) more precisely by repeating the discrete backward Induction 

with each of a series of related grids.    By using the grid 

(3.6) ((y.s):  s - s, + 1A, y - c + kA^;  1 - 0,1 k - 0,+l, 

with many fractional  values of C/A"* (without loss of generality, we assume 

0 < c < A ), one can estimate the break-even points y.(s) arbitrarily well. 
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We now consider EX. an analogue of the extrapolation method E, which 

bypasses the explicit calculation of y (s). Defining 

D(y.s) = d(y.s) - d(y.s) . 

where d is  the    optimal    risk in the discrete time problem (the function 

evaluated by the algorithm (3.3)),  the results of Chernoff & Petkau (1976) 

indicate that for the one-sided problem under discussion, at each fixed value 

of s, one should expect 

(3.7) D(y(s) +  VA'*,S) =   - H(Ws),s)r(v)A 

where the function r(v)  is given by 

(3.8) 
r(v) = 

= v^ -  1nf(v + j)^ 

for V > -1/2 , 

for V < -1/2  , 

and 

(3.9) M(y.s) = i V'^**^  " ''s^^'*' 

is  the "rate of losing".    Suppose then that the algorithm (3.3) has been 

carried out and we wish tp approximate y(s).    At those values on the s grid, 

the value of D(y,s)  is available at y.(s)  for j = 0,  1.  ...  (of course. 

D 5 0 at yj(s) for j = -1.-2,  ...).    If we represent 

21 

(3.10) VQM ' y(s) * vA^ 

we only require an approximation for v.    Fitting the known values of D at 

yQ(s) and y^(s) to the relation (3.7) leads to 

(3.11) 
Dj, H D(yQ(s).s) =  ar(v).    , 

0, 5 D(y,(s).s) =  ar(-l + v) 

where the unknown constant a = -H(y(s),s) . Assuming as suggested by (3.4) 

that - 1%<v£ - % , (3.11) becomes 

(3.12) 

D„ = aiv^ - (v + 1)^ ) ' -a(2v + 1) 

D, = a{(v - I)"" - (v + D^^j = -a(4v) 

Solving the system (3.12) leads to the approximations 

[3.13) 
a = -D,/4v , 

V = D,/2(2Djj - 0,) 

this value for v is then substituted into (3.10) to yield the extrapolation 

estimate of y(s); this method Is labelled EX. Note that In the special case 

where y^{s)  is Itself a break-even point. DQ » 0 and this extrapolation scheme 

calls for estimating y(s) as y^ii)  + 0.5a*, while in the case PQ<0 the scheme 
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calls for a correction which is larger than 0.5A' ; these properties agree 

with what is suggested by (3.4). 

In sumnary, the technique which we propose to employ to solve the general 

optimal stopping problem for a zero drift Wiener process In the (y,s) scale defined 

earlier is as follows: The Wiener process Y(s) Is approximated by a discrete 

time simple random walk process and backward Induction is employed to solve the 

optimal stopping problem for this discrete time problem. The solution of the 

discrete time problem Is then adjusted by one of the methods CA, LA, QA or EX 

to approximate the solution of the Wiener process problem. In the above, details 

of the methods of adjusting the discrete time solution have been discussed in 

the context of a one-sided problem with a monotone increasing boundary. It should 

be clear that the same methods can be used in problems with more complicated 

types of optimal continuation regions. Further, It should not be surprising that 

exactly the same techniques can be employed to solve the general optimal stopping 

problem for a zero drift Wiener process in the (x.t) scale defined earlier. 

The reader will already have noticed that while we have dwelt at some 

length on adjusting the boundary of the optimal continuation region for the 

discrete time problem to provide an improved approximation to the boundary 

of the optimal continuation region for the continuous time problem, nothing 

has been said about how one might similarly adjust the optimal risk. In order 

to do so, a relationship between the discrete and continuous time risks 

analogous to the relationship between the boundaries given by (3.4) would 

be necessary; unfortunately, no such relationship is known at present. 

In the next section, these techniques will be illustrated on some of the 

examples described in Section 2; the behavior of the optimal discrete time risk 

as an approximation (unadjusted) to the optimal continuous time risk will also 

be considered. We remark that for certain problems there are a nunter of ways 

of reducing the labor involved in carrying out the backward Induction algorithm 

(3.3); these typically depend upon the particular problem under consideration 

and will be discussed as the opportunity arises in the next section. 
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4.     ILLUSTRATION OF TECHNIQUES 

In this section we Illustrate the behavior of the general  technique described 

In the previous section In the context of some of the examples presented In 

Section 2; each example has  Its own particular features, but the basic algorithm 

Is In every case the same.    While application of this technique to derive refined 

estimates of the optimal boundary and risk for the continuous time problem would 

require an exorbitant amount of computation, nevertheless.  It Is extremely easy 

to program and relatively coarse grids on the s axis yield surprisingly accurate 

estimates. 

The (y.s) problems which have been described all have the property that the 

Interval of possible values of s is infinite.    For these statistical problems,  the 

region of large values of s is of particular interest since it corresponds In 

each case to the "beginning" of the problem where little Information is yet 

available.    The question of how one obtains estimates In   a practical manner for 

large values of s will be discussed in the next section;  In this section we restrict 

attention In each case to the Interval  100 ^ s >^ s,. 

We begin with the examples for which exact solutions are known; these permit 

a careful examination of the convergence of the estimates as the grid spacing is 

refined.    We then discuss the implementation of the techniques for the other 

examples and present a few results. 

Example 2.5.    Modified Ansconibe problem.    This problem Is synmetric in y with 

optimal  continuation region C =  ((y.s):   |y|  <• y(s), s > 1), where the monotonically 

increasing boundary y(s)  is specified by    1 - *(y(s)/s^) = s'V2        Note that 

y(s) -(n/2)*(s - 1) as s ^^ 1 and y(s)  - (2s log s)** as s ^ -. 

Consider carrying out the algorithm (3.3) to determine the solution of 

the corresponding random walk problem, using a grid of the form (3.6) for 

some value of c.    The computation proceeds In stages: At the initial  (zero-th) 

stage, the values of d are assigned at all points of the grid corresponding 

to the final value of s, namely s ■ s^ - 1.    At the kth stage, d has already 

been evaluated at all points of the grid corresponding to the values of 

s • 1 + jA, for J » 0, 1 k - 1; d Is then evaluated at all points of 

the grid corresponding to s = 1 + kA .    In the course of this computation 

which yields the optimal risk for the random walk problem, each of the 

Individual grid points Is classified as either a stopping point or a continuation 

point for the random walk problem.    Thus, the sequence of highest continuation 

levels corresponding to the particular grid being employed are determined and 

any of the methods described In the previous section can be employed to obtain 

an approximation to the continuous time boundary y(s). 

While this computation is straightforward, there are a number of fairly 

obvious modifications which reduce the amount of computation Involved In 

carrying out the algorithm (3.3) for this particular problem.    First, due to 

the symmetry, we have   d{-y,s)= d(y.s) at each s.    Using a grid which Is 

symmetric about y « 0 (use of c =■ 0 in (3.6)) then allows attention to be 

restricted to the positive y half-plane.    Second, It is Intuitively obvious and 

easy to show that the sequence of break-even points for the random walk problem 

Inherits the monotonicity property of the continuous time boundary y(s).    Thus, 

at stage k where s » 1 + k-A, the grid levels Ca**, 2A'*,  .... y^il + (k - 1)A), 

where yjjd + (k -  1)A)  is  the highest continuation level corresponding to 

s » 1 + (k - 1)A, are known to be in the continuation region.    At stage k then. 
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d can simply be assigned the value of d* (see (3.5)) at these grid levels.    The 

minimization indicated by the algorithm (3.3) need be carried    out only at 

successively higher grid levels until  the first stopping point is encountered; 

all higher grid levels will also be within the stopping region for the random 

•walk problem.    In fact,  for reasonable values of fl, the minimization need be 

carried out only at the single grid level y_^(l + (k - 1)6) = y^d + (k - 1)A) 

+ 6      since if the highest continuation level does change at stage k, it will 

change fromy^d + (k - 1)A) to y_^(l + (k - 1)fl). 

These computations have been carried out for a sequence of grids specified 

by decreasing values of the grid spacing i.    Since the only apparent pattern 

in the size of the errors, e = y - y of estimation of the continuous time 

boundary y(s) was a very slight tendency for the errors to decrease as s increased, 

an overall sutimary should be an adequate description.    Such an overall sumnary 

for each of the methods CA. LA, QA and EX Is provided in Table 1. 

Examination of Table 1  reveals that while methods CA and QA underestimate 

the correction required to approximate the continuous  time boundary for coarse 

grid spacings and overestimate it for the (more reasonable) finer grid spacings, 

method LA overestimates the correction for all spacings considered.    Method EX 

underestimates the correction for coarse grid spacings, but this bias begins 

to disappear as  the spacing is refined.    Perhaps the most important observation 

to be made about Table 1, however, is the apparent relationship between the size 

of the errors made and the grid spacing for method EX:  refining the grid spacing 

in s by a factor of 4 appears to reduce the size of the errors, as measured by 

either   Ave (|e|) or Max {|e|), by a factor of between 3 and 4 (note that if the 

factor truly is 4, this implies the size of the errors is proportional to the 

grid spacing in s).   Since refining the grid spacing in s by a factor of 4 involves 

8 times as much computational work,  this  leads to the rough estimate of 2.8 to 

3.7 times as much work required to reduce the size of the errors by a factor 

of 2 when method EX is employed.    Although it is clear that the size of the 

errors made by the other methods will also decrease as  the spacing is refined, 

the actual behavior is unpredictable since no such empirical relationship is 

obvious for these other methods.    The table clearly indicates that while 

methods CA and EX should not be used with coarse grids,  these become the 

preferred methods with the (more reasonable)  refined grids.    It should be noted 

that all four methods provide excellent approximations to the continuous time 

boundary y(s) when reasonable grid spacings are employed. 

The optimal  risk for the discrete time simple random walk problem was 

also examined as an approximation to the optimal risk for the continuous  time 

Wiener process problem.    A crude suimiary of the errors in this approximation 

Is presented in Table 2.    This suramary indicates that refining the grid spacing 

In s by a factor of 4 leads to a reduction in the size of the errors by a 

factor of between 3 and 4 also.    Further, the table clearly indicates that the 

risk in the discrete time simple random walk problem provides an excellent 

approximation to the optimal  risk for the continuous time problem, even for 

quite coarse grids. 

We remark that in contrast to the continous time problem, the random walk 

problem under consideration here has  the property that the continuation region 

is prematurely truncated; that is. there exists an Interval on the s-axis. 

(I.Sf(fl)).   on   which none of the grid points will be classified as continuation 

points. An easy    calculation indicates  that,  for small values of fl. the grid 

point y = 0. s = 1 + kfl will first (as successive stages of the backward 

induction are carried out) belong to the continuation region for the random 
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walk problem when Ic = (ZHA)'^ + 1 + o(l).    While this represents a substantial 

number of successive stages only for very small values of A, this feature could 

also be Incorporated to make the computation more efficient for such small 

values of A.        . 

Example 2.6.    Van Moerfaeke's gairbllng problem.    This gambling problem has a 

one-sided continuation region C =  ((x.t):  x > x(t), t < 1) with monotonlcally 

increasing boundary x(t) = -o.(1 - t)**. where a " 0.5061  Is the solution of 

a*(o) = 4.(0).    Although this problem is formulated In terms of the function 

g(x,t) which specifies the reward received by the ganfcler upon stopping at (x.t) 

and Is given In (2.10),  the problem can be equivalently formulated in terms of 

the stopping cost function 

d(x.t) = -g(x,t)    . 

The appropriate modification of the algorithm (3.3)  is then given by 

(4.1) 
d(x,t) = d{x.t) for t = 1, 

m1n[d(x.t).  id(x+A^.t+A) + d(x-A^t+A)}/2] for t < 1. 

While the first few stages of this algorithm can be carried out analytically 

and lead to break-even points x^(l  - A)  = 0. x (1-2A) = (-2+3'*)A'*  ^   -0.268A'*, 

X^(1-3A) = -(4-1O'^)A'*/2   =-0.419A'*. and so on (note that applying the jA** 

correction to these exact break-even points would lead to estimates of the 

continuous time boundary of x(l-A) =-O.SOOA**, X(1-2A)= -0.543(2A)'^, 

X(1-3A)=-0.531(3A)  , and so on),  these exact calculations become unmanageable j. 

after a few stages. 

29 

Carrying out the algorithm (4.1) proceeds similarly as In the case of 

Example 2.5 and any of the methods described In the previous section can be 

employed to obtain an approximation to thecontinuous time boundary x(t). 

The present problem, however, has Its own special features.    For the contin- 

uous time problem,  {(x.t): x > O, t j< Dc C; this fact would be known even 

if the   exact solution were unknown since the "rate of winning", 

H(x.t) - *gjj^(x.t) + gj(x.t) > 0 for x > O. t 1 1.    Since It can easily be 

shown that the sequence of break-even points for the random walk problem 

Inherits the monotonlclty property of the continuous time boundary x(t), and 

since x^(l - A)  =0. the above result Is also true for the discrete time 

random walk problem.    Again, it can be shown that the minimization Indicated 

by the algorithm (4.1) need only be carried out at a single grid level at 

each stage of the computation. 

The fact that all grid points above the x axis are known to be continuation 

points can be Incorporated to reduce the amount of computation required In 

carrying out the algorithm (4.1).    Consider a particular path of the random 

walk process originating at the point (x.t) » (c + A**, 1 - nA).    The path of 

the process could hit the grid level x » c for the first time at ,    , 

t = 1 - (n - 1)A, 1 - (n - 3)A,  ...; alternately, the path ctuld remain above 

the line x = c all  the way to t - 1.    Since all  che grid points (c. 1 - IA) 

for t ' 1, 2,  ... are continuation points, we have the relation 

(4.2)        d(c+A^,l-nA) -    I pj(c.l-(n-m)A) +   Jq„ .d(c4kA^,l) 
m=l k=l 

n,k 

where p^^ Is the probability that a simple random walk starting at the origin 

first passes through the level -1 at the m  step, and q . Is the probability 
n IK 
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that a simple random walk starting at the origin stays above the level -1 for 

the first n steps and achieves level k - 1 at the nth step.    Feller (1968, p.89, 

Theorem 2) provides ' 

^m °   i [(m+D/zJ' for m odd , 

for m even ; 

for m positive, p^^^ = ^Ji"' * 3) with p^ = 1/2 and Pp,= 0.    Feller (1968, p.73, 

Ballot Theorem) also provides 

%.k =    0 

f      n+1        \, 
[(n+k+l)/2 I' THT l(n+k+l)/2 

for n + k even , 

otherwise . 

The relation (4.2) provides a slight modification for carrying out the 

backward Induction which we will call the truncation modification.    At the 

initial  (zero-th) stage, that is at t = 1. the risks are specified by d(x,t). 

At any subsequent stage, corresponding to t = 1 - nA say, compute the risk at 

the grid level x = c + A** by means of (4.2).    The risks at the grid levels 

X = c + kA** for k = 0, -1, -2,  ... can be computed using the algorithm (4.1) 

as described above. 

Returning for a moment to the continuous time problem, we have already 

pointed out that changing the stopping reward function by adding to It any 

solution of the backward   heat equation leaves the optimal continuation region 

unchanged.    For present purposes. It Is convenient to consider the new stopping 
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reward function g'(x,t) defined by 

g'(x,t) = g(x.t) - 2(1 - t + x^) , 

or the new stopping cost function d'(x,t)  = -g'(x,t).    Note that d'(x.l)  = 0 

for X >_0.    The algorithm (4.1) can be employed to obtain the optimal risk 

d'(x,t)  for the discrete time random walk problem corresponding to this 

version of    the continuous time problem;  In this case the relation (4.2) 

simplifies to . 

(4.3) 
*. II * 

d'(c + A , 1 - na) =    I Pm'^'Cc.l - (n - m)A) 
m=l 

which results in a reduction in the computation Involved in carrying out the 

algorithm. Limited empirical evidence suggests that the truncation modification 

reduces the computation time required by a factor of approximately two In 

those cases where the simplification (4.3) obtains. 

In the general case, the transformation 

g'(x,t) - g(x,t) - / (t,-t^''♦((x•-x)/(t,-t)^)g(x•,t,)dx• 

'<l 

produces a new stopping reward function with the same optimal continuation 

region and satisfying g'(x,t,) - 0 for xxx,. Unless this Integral can be 

explicitly evaluated, however, no real simplification obtains. For our special 

function g In (2.10). this Integral (with x, - 0, t, =■ 1) does not coincide with 

2(1 - t + x^), but the difference Is simply a solution of the backward heat 

equation. 

The computations have been carried out for a sequence of grids specified 

by decreasing values of the grid spacing;    In all cases, grids of the form 

(3.6) with c = 0 were employed .    Since there was no apparent pattern In the 
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size of the errors e = x - x of estimation of the continuous time boundary x(t), 

an overall sumnary of these errors should be adequate.    Such an overall summary 

for each    of the methods CA, LA. QA and EX appears  in Table 3. 

Table 3 reveals that while methods CA,  LA and QA always overestimate the 

correction required to approximate the continuous time boundary (except at the 

coarsest grid spacing In the case of CA). such a severe bias Is not apparent 

with EX although the method does tend to underestimate the correction required. 

The relationship between the size of the errors made and the grid spacing Is 

quite clear for methods CA. LA and QA:  refining the grid spacing In s by a 

factor of 4 appears to reduce the size of the errors by a factor of 2; for method 

EX the reduction factor appears to be about 3.    While all methods provide 

excellent approximations  to the continuous time boundary x(t) when employed with 

reasonable grid spacings.  the preferred method would appear to be EX. 

A crude sumnary of the errors  In the approximation of the continuous time 

risk by the optimal  risk In the discrete time random walk problem is presented 

in Table 4;  It is apparent that this approximation Is excellent even for 

relatively coarse grids.    Further, it Is clear that refining the grid spacing 

in t by a factor of 4 leads to a reduction In the errors by a factor of 4.    It 

is interesting to note that in this example it appears the various discrete 

time random walk problems are uniformly less  favourable than the continuous 

time   problem.    Examination of isolated grid points indicates that the risk 

in the discrete time problem converges monotonically to the continuous time 

risk.    These observations are In contrast to the situation in Example 2.5. 

Recall that the methods CA. LA, and QA proceed in two stages:  first the 

break-even points for the discrete time random walk problem are approximated; 

these are then adjusted by 0.5L^ as suggested by the asymptotic relationship 
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(3.4).    At an early stage of these investigations, the performance of this 

adjustment of 0.5A   was investigated in the context of Example 2.6.    For 

a fixed grid spacing A, the results of carrying out the backward Induction 

with grids of    the form (3.6) with c ■= 0(0.0001 )A   were combined to locate 

the break-even points to within an error of 0.0001    at the expense of a 

very    substantial amount of computing  .    The errors in the approximation of the 

continuous time boundary by both the "raw" break-even points and the "adjusted" 

break-even points (adjusted = raw - 0.5A^) were then evaluated.    The results 

for a few grid spacings are summarized In Table 5.    Note that Ave(|e|) and 

Max(|e|) are similar throughout the table; this indicates that the errors are 

roughly constant at different values of t.    As expected on the basis of (3.4), 

the errors with the raw break-even points are very close to 0.5A .    While the 

adjustment of 0.5A^ IS slightly too large for each grid spacing, this error 

seems to decrease faster than   0.5 A^ as the grid spacing decreases  (393/5000 = 

0.079,  156/2500 = 0.062. 58/1250 = 0.046).    Comparing these results to those 

in Table 3,  It becomes clear that,  for this problem, while method LA does not 

estimate the break-even points very accurately. QA does reasonably well, 

particularly for the coarser grid spacings.    Method CA always underestimates 

the break-even points (for this problem and generally)    and this compensates 

for the fact that 0.5A^ is an over-adjustment here.    It is important to note 

that the errors incurred with method EX are very similar to the errors 

reported in Table 5 (compare especially Max(|e|)); for this problem method 

EX does as well as any possible method based upon adjusting estimated 

break-even points. 

These methods can be adapted for all of the examples we have discussed. 

The methods employed in Example 2.5 apply without modification to Example 2.3. 
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A sUght modification was required for Example 2.4; attention could not be 

resticted to the positive y half-plane since the problem was not syimetric 

in y.    Detailed results for these examples have already appeared in Chernoff 

& Petkau (>981) and Petkau (1978) respectively.    In the remainder of this 

section we examine the behavior of these methods in Examples 2.1, 2.2, and 2.7. 

Example 2.1.     Sequential  analysis problem.    This problem is 

symnetric In   y with optimal  continuation region 

C - ((y.s):  |y| s  y (s), s iO).    Asymptotic expansions for the 

monotonlcally increasing boundary demonstrate that y(s) " % s'   as s ->^ 0 and 

y(s) - (3s log s)^ as s -»^ -.    The methods employed In Example 2.5 apply 

without modification, and the random walk version of this problem Is also 

naturally truncated; an easy calculation indicates that, for small values of 

a, the grid point y - 0, s = ki will  first belong to the continuation region 

when k ^ Z^^tT^" + z'^^^^'^^in'^^^  + ...  . 

Although the desired computations can be carried out In a straightforward 

manner, it'Is more difficult to examine the performance of the methods since 

the exact solution to the continuous time problem Is unknown.    To Illustrate 

behavior as the grid spacing decreased, the approximation to the continuous 

time solution provided by a given method with the most refined grid spacing 

was taken as a baseline for that method.    The deviation of the approximation 

obtained with a less refined grid spacing from this baseline is suimiarlzed 

in Table 6.    The disparity among the approximations obtained by the different 

methods with each spacing employed is suirmarized in Table 7.    Table 7 indicates 

clearly that, in this example, the approximations to the continuation regions 

for the continuous time problem produced by methods LA and QA are strictly 

larger than that produced by EX; the same tendency can be noted for CA. 

3S 

Relative to the size of the grid spacing, the methods CA, QA and EX agree quite 

well for the smaller grid spacings.    Table 6 indicates that while methods CA 

and EX improve dramatically as the spacing is refined, the improvement is less 

dramatic for LA and QA.    Overall, the patterns here appear to be very similar 

to those observed In Example 2.5. 

The    convergence of the optimal risk in the random walk problem as the 

grid spacing decreased was also examined.    The optimal risk with the most 

refined grid spacing was taken as the baseline.    The results as suirmarized in 

Table 8 and are not unlike the results obtained in Example 2.5. 

Example 2.2.    One-armed bandit problem.    This problem has a one-sided contin- 

uation region C = ((y.s): y iy(s), s >_ 1) with a monotonlcally decreasing 

boundary y(s).    Asymptotic expansions demonstrate that y(s) - -o(s-l)    as 

s ^^ 1, where a = 0.63884 Is the solution of (a' - l)*(a) + a'»(a) • 0, and 

y(s) - -(2s logsr as s -♦ ~.    The first few stages of the backward Induction 

algorithm lead to break-even points y^(l + A) "= 0, y^(l + 2A) = -A''(1+2A)/{3+2A), 

y.(l+3A) - -4A''{1+A)(1+3A)/(7+15A+6A'). and so on.    Addition of any solution 

of the forward heat equation to the stopping cost d(y,s) given In (2,4) 

leaves the optimal continuation region of the continuous time problem unchanged. 

Upon converting to the new stopping cost function d'(y,s) = d(y,s) + y, for 

which d'(y,l)  = 0. the methods eirployed in Example 2.6 apply to this example 

without modification.    The results for this example are summarized in Tables 

9, 10 and 11.    Overall, the results are quite similar to those for Example 2.1. 

Example 2.7.    The S /n problem with finite horizon.    Since the "rate of 

winning" for this gambling problem  is   positive for negative x, this region 

Is contained within the optimal continuation region.    As would be anticipated. 
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this problem has a one-sided continuation region C =  ((x.t):  x < x(t),    . 

0 < t £ 1); asymptotic expansions demonstrate that x(t)  - a„t^ as t -<■ 0, 

where a^ = 0.83991  is the solution of a+(a) + (o^-l)*(a) = 0, and 

x(t) - a,(l-t)'' as t -► 1, where a^  = 0.63884 Is the same constant which 

appears  in the asymptotic expansion of the boundary for the one-armed   bandit 

problem.    The first few break-even points for the random walk problem are 

given by ijl-A) = 0. X,(1-2A) = A'^(1-2A)/(3-2A). i (1-3A)= 4AI-A)(1-3A)/ 
A A A 

(7-15A+6A^), and so on. Since the sequence of break-even points will not be 

monotone, slightly more detailed calculations are necessary when carrying out 

the backward induction than was the case In Example 2.6. However, converting 

to the new stopping reward function g'(x,t) = g(x,t) - x, for which 

g'(x,1) ; 0, allows the general technique employed In Example 2.6 to be used 

here also. The results for this example are summarized In Tables 12, 13 and 

14. While the results are qualitatively similar to those In the previous 

examples, a few features should be noted. Since the optimal boundary is 

dome-shaped, it Is clear that method CA, which approximates this curved surface 

by a flat surface in the region of the maximum, must do poorly for coarse 

grid spaclngs. Uhile both LA and QA produce smooth approximations, method 

EX produces approximations which occasslonally exhibit a lack of smoothness 

in the neighbourhood of values of t at which the highest continuation level 

changes; this tendency is most pronounced with coarse grid spaclngs but 

persists even with refined grid spaclngs. Further, since the optimal risk 

approaches infinity as t ^ 0, the deviations sunmarlzed in Table 14 become 

large at the smaller values of t; Indeed, the deviation which Is largest in 

magnitude in each case occurs at t = 0.04, x = 0.1 . In spite of these 

limitations, the results presented again Indicate that the methods perform 
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quite well.    In Table 15, we present an abbreviated table of the approximation 

to the boundary of the optimal continuation region for the continuous time 

problem obtained from the computation with the most refined grid spacing.    Note 

the accuracy of the l-temi asymptotic expansions given above as t -♦ 0 and 

t ^ 1. 
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5.  PRACTICAL IMPLEMENTATION IN STATISTICAL PROBLEMS 

The continuous time problems described In Examples 2.1-Z.4 arise from 

statistical problems and share the property that the range of possible s 

values is Infinite. In this section we indicate how the numerical methods 

which have been described can be employed to obtain estimates of the stopping 

boundary and the Bayes risk for these problems in the region of large values 

of s. The properties of the proposed technique will be examined in the 

context of Example 2.5, the modified Anscombe problem, and summaries of the 

estimates obtained for both the sequential analysis problem and the one-armed 

bandit problem will be presented. 

While the results of the previous section establish that estimates obtained 

with the numerical methods are accurate provided that small grid spacings fl 

are employed, the use of a small grid spacing in a baclcward induction designed 

to obtain estimates for large values of s, say out as far as s ° 10 , would 

require an exorbitant amount of computer time. On the other hand, while the 

use of a large grid spacing will allow the determination of reasonably good 

estimates at large values of s, the estimates obtained at smaller values of s 

would typically be poor. A hybrid technique which uses a small grid spacing 

at the initial stages of the bacltward Induction and larger grid spacings at 

larger values of s is required. 

A naive technique of this sort would consist of carrying out a nunter of 

separate baclcward inductions, the first with a very small value of A and 

successive ones with successively larger values of A. Each of these backward 

inductions would begin at s^, the initial value of s, and if each was carried 

out to the same number of stages, estimates would be obtained in successively 

larger overlapping Intervals of s. The results of the separate backward 

inductions could then be combined; at any fixed value of s. the estimates would 

be obtained from the backward induction Involving the smallest value of A to 

rcach'this value of s. Thus, in different intervals of s, the estimates of the 

Bayes risk and the stopping boundary for the continuous time problem are the 

estimates obtained in different approximating discrete time simple random walk 

problems. While this simple technique seemed to lead to adequate estimates in 

Petkau (1978), estimates at large values of s might be unnecessarily crude 

sinc^ these are obtained by backward Inductions which use fairly large values 

of A even at the Initial stages. 

A simple way of avoiding this difficulty Is to carry out a single backward 

induction that incorporates a changing step size as it proceeds. The first 

phase of this backward induction might execute H, stages corresponding to a 

very small grid spacing A,, from the Initial value s, to S,+M,'A, « sJ say, 

and the second phase might execute M. stages corresponding to a larger grid 

spacing A2, from the initial value for this phase of s- ■= st to s.+M.-Ap " s- 

say. At the first stage of the second phase, estimates of the risk at all 

the new grid levls at s- could be interpolated from the estimates of the risk 

at the old grid levels at s-. The backward induction could be continued for 

as many phases as desired; an interpolation of the estimates of the risk would 

be required at the first stage of each successive phase. Of course, the 

estimates of the Bayes risk and the stopping boundary for the continuous 

time problem which are obtained in this way do not correspond, except in first 

phase, to the estimates which would be obtained from any particular approxi- 

mating discrete time simple random walk. On the other hand, this technique 

should lead to more accurate estimates at large values of s than the naive 
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technique described above; since very small values of A could be employed In 

the initial phases, this would Insure that the computations at later phases 

of the backward Induction would be based on excellent approximations to the 

Bayes risk for the continuous time problem at the earlier phases. 

Implementation Imnedlately revealed that this technique led to slight 

discontinuities in the estimates of both the Bayes risk and the stopping 

boundary for the continuous time problem at the values of s which marked the 

transition from one phase to the next. To overcome this difficulty the 

technique was modified to have successive phases carried out on overlapping 

intervals of s. Specifically, the first phase is carried out as described 

above, but the initial value Sy ^°*' ^^^  second phase'would no longer be st 

but rather some value of s Intermediate between s^ and Sj. The estimates 

of the risk obtained at this intermediate value of s would be stored during 

the course of the computations In the first phase, enabling the interpolation 

necessary at the first stage of the second phase to be carried out. The 

estimates of the Bayes risk and the stopping boundary for the continuous 

time problem at values of s in the overlapping region would be those obtained 

with the finer grid spacing; that is. those obtained in the earlier phase. 

This nndlflcation would be Implemented at the transition from each phase to 

the next, and the backward Induction could be continued for as many phases 

as desired. Empirical evidence indicated that for all practical purposes 

this modification removes the observed discontinuities provided that the 

overlapping interval corresponds to a sufficient number of stages of the next 

phase. Although what constitutes a sufficient number of stages depends upon 

the particular problem, our experience suggests that an interval corresponding 

to a hundred stages of the next phase would certainly be adequate. 
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This technique was employed in Chernoff and Petkau (1981), and will also 

be employed here. The overall mechanics of the proposed technique are specified 

by the grid spacing to be used and the number of stages to be executed in each 

phase of the backward induction and the extent of overlapping to be employed 

from each phase to the next. We have not systematically explored the possible 

versions of the technique, but rather have used the simple version in which the 

nuirfjer of stages to be executed is the same in all phases, the grid spacing Is 

increased by a constant multiple from one phase to the next, and the extent of 

overlapping is a fixed fraction of the interval of s values over which the 

stages of the previous phase were executed. 

The results presented in the following were obtained using the technique 

with 2080 stages in each phase, the grid spacing A increased by a factor of 

4 from each phase to the next, and the extent of overlapping corresponding to 

one-half the interval of s values covered by the previous phase; this extent 

of overlapping corresponds to 1040 stages of the previous phase or, since A is 

increased by a factor of 4 from each phase to the next, 260 stages of the 

current phase. Since only grids centered on the y-axis were employed (use of 

c=0 in (3.6)), use of the factor 4 for increasing A from phase to phase implies 

that the grid at the previous phase is a refinement of the grid at the current 

phase. Consequently, the estimates of the risk at the new grid levels at the 

value of s corresponding to the first stage of any phase are provided by the 

estimates of the risk at those same grid levels at that value of s in the 

previous phase; no interpolation is necessary. 

For each example, the grid spacing for the first phase was taken to be 

A = 25 X 10"' and estimates were obtained out to s = 10*. The estimates 

of the risk were obtained as described above. Estimates of the boundary were 

printed out whenever the grid level corresponding to the last continuation 
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level changed;  the estimates at these values of s were obtained by method 

EX.    Subsequent to the completion of the backward Induction, an estimate of 

the stopping boundary at any fixed value of s can he obtained by Interpolation 

from this listing.    Where a tabulation of the stopping boundary is provided 

In the following, linear Interpolation has been employed. 

Since the solution of Exarrple 2.5,  the modified Anscotifce problem,  Is 

available In closed form (see (2.8) and (2.9)), the behavior of the above 

technique can be examined in detail.    A crude sunmary of the accuracy of 

the estimates of the risk within the continuation region is provided in 

Table 16.    This sunmary suggests that the relative errors tend to be 

largest close to y = 0, where they are of the order of lO"""; 

detailed examination of the errors on a much finer grid of (s.z) 

values, where z » y/s  , suggests the empirical upper bound of 3x10"    on the 

relative errors in this problem when the proposed technique is employed in 

the manner described above.    A suimary of the errors  In the estimate of the 

stopping boundary is provided in Table 17.    The largest relative errors 

(which are still relatively small) occur in the region of s values close to 1 

where the stopping boundary y(s) Is close to 0; in this region, asymptotic 

expansions would be available for y(s) and could complement the numerical 

results.    For this problem,  the relative errors decrease slightly across phases 

until the grid spacing exceeds 1 when they begin to increase again.    The errors 

themselves increase across phases roughly in proportion to ay, the size of 

grid spacing on the y-axis (at least as long as the grid spacing is less 

than 1; after this the rate 6f Increase appears to be a bit faster).    It Is 

interesting to note that the estimates of the boundary are ^Iways overestimates 

(errors > 0) for phases 1-6 and underestimates (errors < 0) for phases 9-13. 
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Since this performance of the proposed technique was judged to be adequate 

for our purposes,  the technique was implemented In exactly the same fashion for 

Examples 2.1 and 2.2.    Detailed estimates of the Bayes risk and the stopping 

boundary for these problems have not been presented in the literature; we 

sumnarlze the results here. 

Example 2.1.    Estimates of the stopping boundary for the sequential  analysis 

problem are tabulated in various scales of Interest  In Table 18.    The asymptotic 

expansions 

x(s)  =;(s)/s  - Js[l  -^S' + ^JQ S6 -...] as s -> 0, 

z(s)  = ;{s)/s'«  - I M\  - ^ s3 * j^ se - ...] as s -<^ 0, 

0(s) = 1 - ♦(z'{s))  - J. J-Js^2[l  - ^s3 + ...] as s .0. 

can be used to extend the table to even smaller values of s.    On the other 

hand,  the asymptotic expansions 

i(s) = y(s)/s - s''«{log s' - log(8„) - 6(log s')"' +  ...]'-i as s -* «, 

z(s) = y(s)/s'' - {log s' - log(8n) - 6(log s3)"^ + ...)'' as s -► <», 

8(s) = 1 - t(z{s)) - 2(s3log s3)"'«(l + [2 + i 1og(8n)](log s^)'^ + ...) 

as s ->■ ", 

perform only moderately well at s = 10*. 
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The Bayes risk In the continuous time version of the sequential analysis 

problem corresponding to starting at the point (y^.s^,) In the normalized form of 

the continuous time version (the coordinates y^ and s- are determined by the 

parameters MQ and o^ of the prior distribution for u together with the parameters 

k, c and o; see the discussion of Example 2.1 in Section 2) Is given by 

k2/3c'/3„2/V(d(V(S).S),-s„M. 

and the contribution to the Bayes risk of the cost of sampling Is given by 

k^/V/V/3[E(S-') - s-1] . 

where S is an optimal stopping rule and d(y.s) is given in (2.2). The Bayes 

expected sample size is obtained by dividing the Bayes expected cost of 

sampling by c, the cost of sampling associated with a single observation. 

E{d(Y(S),S)) can be approximated by the techniques described above, and the 

expectation E(S" ) can be approximated In a straightforward manner during the 

execution of the backward Induction. For simplicity In tabular presentation 

we may use the normalization 

BR = Bayes risk/k^^^'^^^^^^ 

-1 

and 

E(d(Y(S).S)) - s" 

ECS    = Bayes expected cost of sampl lng/k^^3j,l/3g2/3 

E(S-') -1 

where both BR and ECS depend only upon the initial values s„ and y„ or t » 1/s 
1/2 0    0   0    0 

and Zp » yg/Sjj  » WQ/OQ. Small representative subsets of the normalized risks 

BR and expected costs of sampling ECS which have been evaluated are presented 

In Tables 19 and 20 respectively. The behaviour of these properties of the 

optimal procedure is also Illustrated in Figures 1-4. The Bayes risk and 

expected cost of sampling are plotted against log(tQ) for a few values of 

Zj, In Figures 1 and 2 respectively. In Figures 3 and 4 these quantities are 

plotted against z^ for a few values of t-. The asymptotic behavior is more 

clearly Illustrated In Figures 5-8 where log BR and log ECS are plotted 

against log(tjj) and z^. 

The tables and figures reflect the form of the asymptotic expansions 

,-V2 BR ~ K s"'^* ♦(Zj,) 

ECS ~ K's^l/Z ^(^^j 

as SQ*- 

as SQ-» 

provided by Chernoff (1965a). The values of BR and ECS for s„ - 10® and 

ZQ « 0 suggest K ~ 5.89. K' - 3.91; regressing the values of BR/S^'''^*(ZQ) for 

*0 ' '''^ '°' " '° *"•* 'o ' " *S«'"St the next term of the asymptotic 

expansion leads to the estimate K •• 5.98. 

Example 2.2.  Estimates of the stopping boundary for the one-armed bandit 

problem are provided In Table 21. The asymptotic expansions 

^(s) . ;(s)/s - -(s-l)'^(c„ + (c, - C„)(S-1) + ...) as s . 1. 

i(s) -Ks)/s'«--(s-1)'*{Co+{c, -}CO)(S-1) + ...)       ass-.!. 

B(S)   -   ♦(i(s))   - J.  J_(S.1)'«(^*£C, 1 ^ _L 

- CQO ♦ Co2)/6](s-1)  +...) 

as s + 1, 

where c^' 0.63883 and c, » 0.23625 are defined by 

VCcp) + ♦(CQ) - 0 .       c, - 2Co/(5 t CQ^)  . 

fit very well for values of s close to 1.    Here, as In the sequential analysis 
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problem, the asymptotic expansions for large values of s 

x(s) • y{s)/s - -s"'^log s2 - 21og(log s') - log(8,i) + ...)''       as s - -. 

i{s) • y(s)/s'' - -{log s^ - 21ognog s^) - 1og(e.) + ...)'' as s ^ -, 

B(s) = ♦(i(s)) - 2s'Hl + 2/1og s' - ^[log (log s')/log s?]^ + ...) 

as s -» -, 

are only moderately accurate at s » 10^. 

The Bayes expected payoff in the continuous time version of the one-armed 

bandit problem corresponding to starting at the point (yQ.Sp) in the normalized 

form of the continuous time version (the coordinates y. and s- are determined 

by the parameters Up and o^ of the prior distribution for u together with the 

parameters N and a; see the discussion of Example 2.2 in Section 2) is given 

by 

and the Bayes expected sample size is given by 

"^"o^fE^S-^-s-']. 

where S is an optimal  stopping rule and d(y.$) - -y/s for s a 1  is as given 

In (2.4).    Since the use of d'(y.s) - d(y.s) + y ■ y(1  - s"^)  in place of d(y.s) 

simplified implementation of the truncation modification (see the discussion 

of Example 2.2 in Section 4). the computations for the Bayes risk employed the 

identity 

Bayes expected payoff - - o^aQ%J/2tE(d'(t(S).S)} - <f{y^.%^)]. 

For simplicity In tabular presentation we may use the normalization 

2 -1 BEP - Bayes expected payoff/o o^' , 
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where BEP and EN depend only upon the initial values y^ and s_ or z_ = yJ^J'^  = 
2-2-2 

Pjj/Ojj and tjj » 1/SQ - a^ l(a^    + No ). the fraction of the total potential 

Information which is in the prior. Small representative subsets of the 

normalized quantities BEP and EN are presented in Tables 22 and 23 respectively. 

The behavior of these properties of the optimal procedure is also illustrated 

In Figures 9-12. 

The tables and figures reflect the form of the asymptotic expansions 

BEP ~ SQ(t(Zp) + :io»(^o)> 

EN ~ s„«(z„) 

as Sp- 

as  Sp* 

provided by Chernoff and Ray (1965). This behavior is more clearly Illustrated 

In Figures 13 - 16 where log(BEP t 1) and 1og{EN + 1) are plotted against 

log(tjj) and z^. 

and 

2 -2 EN '  Bayes expected sample size/o o" . 
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6. THE ANSCOMBE PROBLEM MITH ETHlCAi. COST 

Armltage (1963) has argued that the model of Example 2.3, the Ansconte 

problem, fails to deal adequately with the physician's ethical requirement 

that he provide his current patient with the treatment he believes to be 

best. This requirement often frustrates attempts to gain knowledge to benefit 

future patients. One way to compromise is to modify the model so that an 

additional ethical cost is attached to each application of a treatment which 

the physician believes to be inferior. In this section we present results for 

the special case where this ethical cost is talcen to be proportional to the 

estimate, based on the current posterior distribution, of the Inferiority jp|. 

This consideration of ethical costs introduces a fundamental change in the 

nature of our optimal stopping problem. Fortunately it can be handled with a 

minor modification of our methods. The results are compared to those of 

Chernoff and Petkau (1981) where this ethical cost is not included in the model. 

We begin with a more detailed discussion of the Anscombe problem without the 

ethical cost. 

The discrete time formulation of the model for the Ansconte problem Is 

described briefly in Section 2. The expected loss or posterior risk associated 

with stopping after treating n pairs of patients has two components. The first 

is E(n|M|) which represents the expected cost in patient benefit Incurred during 

the experimental phase where n of the 2n patients treated were assigned to the 

Inferior treatment, and the second is the expected cost due to the possibility 

of selecting the inferior treatment for the final stage and thus losing 

(N - 2n)|M|. 
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If II Is assigned an N(p»,ag^) prior distribution, upon observing the 

differences X,, X„, .... X In response for the first n pairs of patients the 

posterior distribution of p becomes "(Y oS ) where 

(6.1)    Y* = (05% * ''-\Ui)/(o-o' * na-^) . s^ = (o-^ . no-^)-' . 

For n > m, the marginal distribution of Y* - 'i^.  If we treat u as random, is 

N{0,S|u " *n' *""* ^n ~ ^m ^* independent of Y . Thus as sampling continues, 

Y^ behaves like a Gaussian process of independent increments starting from 
* 
'0 ° "O" Since the preferred choice of treatment for the remaining N - 2n 

patients Is Indicated by the sign of Y^,, the expected loss or posterior risk 

associated with stopping after treating n pairs of patients is nE(|ii|) 

+ (N - 2n)E[max{0,-sgn(Yjj)p)] where E represents expectation with respect to 

the posterior distribution of M. Straightforward calculations then lead to the 

expression 

''^n^*(Vn'')-*(N-2n)|Y:i 

for the posterior risk, where y(u) ■= ^(u) + u(»(u) - %} = t(  u ) + % |u|  and 

* is defined in (2.3).    Using (6.1) the posterior risk can be written as 
*    * 

d|(Y„,s^). where 

(6.2) 

Here 

(6.3) 

d,(y*.s*) =   Ns*'*f(y*s*-'^) - o2(s/' - s*-')iy*| 

-1        -2 -9 
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my be regarded as the total  potential  Information for estimating p.    The 

problem of selecting the best sequential procedure for terminating the experl- 

inental phase Is equivalent to the optimal stopping problem where the Gaussian 

•process Y* Is observed and one selects the stopping time n to minimize the 

expected risk E(dj(Y*,s*)). 

A natural approximation to this discrete time problem results  If the 

discrete sequence of partial sums EX,  Is replaced by the continuous time 

Wiener process X(t*). with drift M and variance o' per unit In the t* scale 

(0 < t* <   iN).    The posterior distribution of u. given X(t')  for 0 <  f < t*. 

Is W(r*.s*). where 

In parallel with the above. Y*(s*)  is a Wiener process with drift 0 and 

variance 1 per unit In the -s* scale, and originates at the Initial point 

(yo.S{j), where Sg « og. y^ - '(*(s*) • p^.    As t* Increases from 0 to  *N, 

s    decreases from SQ to s, as defined In (6.3). 

The posterior rlslc associated with stopping at (Y*,s*)  Is d,(Y*.s*). 

and this continuous time problem Is equivalent to an optimal stopping problem 

for the continuous time process Y*.    Since for a > 0 the transformation 

Y - aY*. s - a^s* replaces Y*(s*) by a Wiener process Y(s)  In the -s scale, 

we may select   a    so that a^s, - 1, that Is. a - s;*" - (op^ +  kNo-^^.    Then 

the initial point (y^.sj) - (PQ-VJ  *« transformed to (y^.s^), where 

Setting     y = ay*, s = a's*.   from (6.2) we have,  for s_ a s a 1   , 

SI 

■LHI d,(y .s ) = Na''s^H'(ys''^) - ao'(1 - s-')|y| 

(6.4) ,J„;U "s •^ Vtt ti p *^ \ •  o'oo'V«2(1 - S5')s^*(ys-^) - (1 - s->)|y|) 

Slnce s^i'(Y(s)s" ) Is a martingale, the term involving s t satisfies the heat 

equation and does not affect the solution. Hence the continuous time version of 

the Anscombe problem Is equivalent to the parameter-free problem where the 

stopping cost Is 

d3(y.s) '  -(1 - s-Mlyj . 

The parameters enter only in the determination of the starting point CVQ.SQ) 

and the transformation bacl< to the original (X.t ) scale. 

From (6.4) the Bayes risk corresponding to starting at (yn.Sp) is given by 

(6.5)  E(d2(Y(S).S)) - o'ap->s^''[E(d3(Y(S).S)) + 2(1 - s-^s^J^ t(y^s-'* )] 

where S is an optimal stopping rule; the quantity E{d3(Y(S).S)) can be approx- 

imated by the techniques described earlier. 

After observing the differences in response for the first n pairs of 

patients, the current estimate of pis Y* . To incorporate the ethical cost. 
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the additional cost of Y|V |. where y Is a constant of proportionality. 

Is Incurred If the decision is to observe another pair of patients; this 

additional cost corresponds to the application of an apparently Inferior 

treatment to one of the patients in the pair. During the experimental phase, 

this ethical cost is accumulated at the rate > 

v|y*idn = -oMy>;;-ds*. 

which corresponds in the continuous time problem to 

-aMY*|s*"*ds* = -a^aylYls-^ds 

= -a^a^'s^'^Ylyls-'ds 

in the transformed scale. 

The Introduction of the ethical cost has changed the nature of our problem. 

Basically we must consider not only the cost of stopping but also the charge 

for continuing each short period of time. There are two equivalent ways of 

regarding this problem. One is In terms of the optimizing backward Induction 

and the other Is In terms of the diffusion or modified heat equation satisfied 

by the risk function. The former is, for s > 1 and Z a standard normal deviate, 

a3(y,s) = m1n[d3(y,s).Y|y|s"^ds + ElBjCy+ZCds)^. s - ds))] . 

with natural discrete time normal and Bernoulli analogues (compare with (3.1)). 

The second term on the right Incorporates the novel cost term. It leads 

to the following free boundary problem In terms of a nonhomogeneous diffusion 

equation (compare with (2.1)): 
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-2 
<l3s(y.s) - td3^^(y,s) + i,|y|s''      for (y.s) c C 

djfy.s) - djCy.s) for (y.s) c S , 

d3y(y.s) '    djyCy.s) for (y.s) £ aC. 

For the discrete time Bernoulli analogue of the backward Induction we have 

(6-6)  djCy^s) - d3(y.s) for s = 1. 

= min[d3(y,s),YJyjs'^A + {d3(y+&*,s-A)+d3(y-A*.s-4)/2] for s > 1, 

and the CA, LA. QA and EX adjustments can be calculated In the same way as before 

Using the discrete time versions the ethical cost accumulated over the 

Interval s to s-fi Is zero when Y(s) - 0. But in the continuous time version the 

expectation of the ethical cost accumulated over the same Interval would be 

(Ignoring the constant multiplier o^o^^s^) the positive quantity 

-YE{|  |Y(u)|u-^du|Y(s)= =0} 

In general the difference between |y|s" A and 

-E(|  |Y(u)|u-2du|Y(s)=y) = -|yjs-U 2(s-A)-'A*f(yA-*) 

+ f  u"^s-u)"**(y{s-u)"*)du 
■"s 

represents one source of error In our approximations. This difference can be 

estimated. Ignoring the constant multlpler o^o'^s*. an asymptotic expansion 

shows that with t = /K7s  .  C, the expectation of the ethical cost accumulated 

over this Interval In the continuous time version, is approximated by 

C = 4Y*(0)S-*[]£^+|E^+^^ +...]    fory = 0. 

= Y|y|s' [t +t + ...] for y !< 0 , 

whereas the analogue in the discrete time version Is YIYIS'^A = Y|y|s"'E^ : 
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thus our approximation Introduces errors of order 0{e ) • 0(a ' ) . 

An alternative approach to the ethical cost problem consists of 

transforming It to an equivalent stopping problem without the nonhomogeneous 

cost term. In this particular application that approach Is not practical 

because the transformed problem Involves a stopping cost containing an 

Integral, the evaluation of which throughout the course of the backward Induction 

Is too expensive to be worthwhile. The general principle may be of some Interest 

and Is presented here. 

Given Y(Sn) ■ y-, SQ £ s 2 s,, the stopping cost corresponding to stopping 

at Y(s) « y is 

d(y.s) ♦ Ksg.s) 

where 

I(s„.s) - -( c(Y(u).u)du 

'*0 

and c(y,s) Is the rate of accumulation of the ethical cost when V(s) » y. 

This stopping cost depends not only on Y(s) and s but also on the path 

Y(S'). Sgi s' i s . 

Let Fj. denote the slgma algebra containing the history of the process 

from Sg to s £ Si .  Then 

M(s) - EdCsp. s,)|Fj) - E{I{S(,.s)|Fj) + E{I(s.s,)iFj) 

Is a martingale.    Moreover 

ECKsg.sJlFj) - KSQ.S) 

and 
1 

E{I(s.s,)|Fj)  - .|    E{c(Y(u).u)|Fj)du - h(Y(s).s)    say . 

Thus, the stopping cost 

may be expressed as a function of Y(s) and s plus a martingale. But the expecta- 

tion of the martingale is Independent of the stopping rule and the optimal stop- 

ping rule Is the same as for the problem with stopping cost 

d'ly.s) - d(y.s) - h(y.s) . 

for which our methods apply. 

In our special problem, the function h Involves an Integral of the form 

u"^s-u)'S(y(s-u)"*)du 

which would have to be evaluated numerically throughout the course of the 

backward Induction. Since this was Judged to be Impractical, the first approach 

was employed here; from (6.5) the approximation to the Bayes risk in the 

continuous time problem corresponding to the starting point (yQiSn) is given by 

O^OQ^J {djCy^.s^) + Z(l-So^)s* ?(yoSj)"*)) 

where d^ Is evaluated by the backward Induction algorithm (6.6). 

Properties of the optimal stopping rule in addition to the Bayes risk can 

also be approximated. For the continuous time problem, direct calculation shows 

that the contribution to the Bayes risk of the post-experimental phase (where 

all the remaining patients are assigned to the treatment which Is inferred to be 

superior) Is given by 

(6.7) oVJsJt2E{(l-S-'')sS(Y(S)S-*))l 

while the Bayes expected sample size (number of pairs of patients treated during 

the experimental phase) is given by 

(6.8) o^o-%(E(S-^)-s-l} 

d(Y(s).s) + I(SQ.S) . d(V(s).s) - h(Y(s).s) * M(s) 

The two expectations appearing in these expressions can be approximated in a 

straightforward manner during the execution of the backward Induction which leads 
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to the approximation of  the  Bayes  risk. 

Sone  of   the  results  of  such  oonputatlons  for  the Anscombe  problea 

without ethical cost were  reported  In Charnoff  and Petkau   (1981)i   there 

d^(y,s)  - dj(y,.)   ♦  2s'''^♦(y."'''^)   , 

-  -(1-s-')|y|   ♦  2s'/^i;(ys-'/2»   . 

I    I   -1        ,   1/2,,     -1/2, 

was employed. The term added'to d  is a solution of the heat equation and 

therefore does not affect the optimal policy.  It was expected to contribute 

to numerical stability since for large |y|B    it is approximately |y| and 

cancels the major part of d and is important when s is large.  In this 

case, d is replaced by d in the algorithm (6.6) and the approximation to 

the Bayes risk in the continuous time problem corresponding to the starting, 

point (YQISQ) i» given by 

««: <.» 2 -1 1/2," ,     .   , -1/2r,   -1/2,. 
(6.9) o °0 'O  *''4'yo'"o' - *"0   ♦'Vo   "• 

These computations have been carried out for the cases Y ■• 0 (the 

Anscombe problem without ethical cost), 0.1, 1.0 and 10.0.  Ihe computations 

were Implemented in exactly the fashion described for Examples 2.5, 2.1 and 

2.2 in Section 5| 2060 stages were carried out in each phase, the grid 

spacing A was increased by a factor of 4 from each phase to the next, and 

the extent of overlapping corresponded to one-half of the Interval of s 

values covered by the previous phase.  For each case the grid spacing for 

-6 
the initial phase was taken to be A - 2S x 10  and estimates were obtained 

-6 
out to s » 10  . The entire computation for the individual cases, which 

included evaluation of the Bayes expected sample size and the proportion of 

the Bayes risk due to the experimental phase as well as the Bayes risk, 

required between 28 and 35 seconds of CPU time at a cost of between $2.00 

and $2.50 on the 12-megabyte Amdahl 470 V/8 at the University of British 

Columbia. 
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The optimal procedure for the continuous time problem may be 

described by the stopping boundary I <t» - 1 - «{i (tj), presented for the 
T If 

cases under consideration in Table 24 and interpreted as follows.  Define 

1/2    *  •   *1/2 
Z - Y(a)/s '^ - y (s )/8  ' , 

the number of standard deviations that the current Bayes estimate of |i is 

away from zero, and 

*-l  -1     -2   • -2    -2  1   -"> 
t - 1/s - S   '/9.   - {O^    +t O   »/(Oo t \   NO ^\. 

the currently available proportion of the total potential information.  If 

at any time B - 1 - •(|z|) < 0 (t), stop taking observations and for the 

remaining N - 2t  units of time use the treatment in accord with the sign of 

It „  Note that B is the observed P value for a one-sided test of |i * 0 based 

on the data and the prior. At time t, the curve z (t) specifies the numlier 

of standard deviations required for stopping and 0 (t) is the corresponding 

nominal significance level.  Thus the optimal procedure may be described as 

a sequence of repeated significance tests with the nominal significance 

level varying with the amount of information availablei as the proportion of 

information available increases from 0 to 1, the nominal significance level 

becomes less stringent. Increasing from 0 to 1/2.  The optimal boundaries 

are plotted in the (B.t) scale In Figure 17.  Note that for a given value of 

t, Bayes estimates of |i further from zero are required for stopping for 

larger values of Y» the ethical cost pararoeteri that is, larger values of Y 

imply earlier stopping. 

Although Figure 17 provides a clear overall comparison, the exact 

form of the stopping boundaries near the distinguished points t » 0, where 

few patients have been treated, and t - 1, where nearly all the patients 
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have been treated, ia of particular Interest.  An asymptotic expansion for 

values of t close to 1 yields 

,V2 V2, «^ - c^(l-t) ' ,     B^ - 1/2 - c^(l-t)''V*^. 

where c is the unique positive solution of 

♦(c) - (1+T)c'?(c), 

for the values T -0.0, 0.1, 1.0 and 10.0, c - 0.7642, 0.7401, 0.5972 and 

0.2893 respectively.  An asymptotic expansion for small values of t yields 

-2 log t -^l *  log «^ ♦ log(2w(1+T)') ♦ ^P' * ^*, 

B^ ~ (1+T)t{l + 3 Clog t)" /4}. 

Since small values of t are particularly relevant for problems involving 

large values of the horizon size H,   it is important to note the accuracy of 

the approximation B^Ct) - (l+tlt for small values of t in Table 24. 

While comparison of the stopping boundaries indicates the effect 

of the ethical cost on the optimal stopping rules, of possibly greater 

Interest are the risks incurred when these optimal procedures are employed. 

These risks depend upon the five parameters |i , o., o, H and f.  For 

sinpllclty in tabular presentation we may use the normallration 

2-1 
BR - Bayes risk/o a       , 

where, as is clear from (6.9), BR depends only upon y  in addition to the 
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initial values of t and Z,   namely 

A small representative subset of the normalized risks BR which have been 

evaluated are presented In Table 25.  In each case the normalized Bayes 

expected sample size 

7   -2 * EN - Bayes expected sample slze/o o 

and the proportion, PR, of the Bayes risk resulting from the experimental 

phase where one-half of the patients are assigned to the inferior treatment 

are also tabulated^  these quantities are computed according to (6.8) and 

(6.7) respectively. 

For fixed values of t  and z , the Bayes risk Increases 

monotonlcally with y$   the tabulated values provide an Indication of the 

magnitude of the effect of the ethical cost.  The tabulated values of EN 

reflect the differences in the stopping rules which are evident In Table 24 

as well as Flgnre 17, and translate these differences Into more meaningful 

quantities.  Note that for small values of t , the ethical cost has little 

effect on PR, the proportion of the Bayes risk due to the experimental 

phase.  The leading term of an asymptotic expansion for t  small and z  not 

large indicates that 

2-1 2 
Bayes risk ~ o o„ (t+Y>♦(z )(log t ) . 

This result explicitly indicates the effect of the ethical cost, and means 

that the order of magnitude of the optimal Bayes risk Is (log N)  which may 

seem surprisingly small. These asymptotic expansions for the Bayes risk and 

the optimal stopping boundaries can be obtained by the techniques described 

in Chernoff and Petkau (1981). 
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The behavior of these Bayes properties of the optimal procedure Is 

Illustrated In Flqures 18-23.  The Bayes risk, Bayes expected sample size, 

and proportion of the Bayes risk due to the experimental phase at « - 0  are 

plotted against loq(t|j) - -loqts^j) in Figures 18, 19 and 20 respectively. 

While the quadratic nature of the dependence of the Bayes risk on log s  for 

large values of s^  is Clearly indicated in Figure IB, Figure 19 Indicates 

that the Bayes expected sample size grows at a considerably faster rate. 

These trends are even more apparent when the same quantities are plotted 

against {loq(tjj)) , although such plots are not included here.  These same 

plots for other values of z^ yielded similar patterns.  In Figures 21,22 .and 

23 these same quantities at t^ - 10"* (s^j- 10*) are plotted against z  ,     the 

same plots for other values of t^^ yielded similar patterns. 

The results presented were all obtained using the backward 

induction (6.6) with d^ replaced by d^.  This algorithm approximates the 

expectation of the ethical cost accumulated over the interval s to s-A in 

the continuous time version by the ethical cost accumulated over the same 

interval in the discrete time version, thereby introducing errors of order 

0(£ ), where «  - A/s.  Since  e  < 0.003 in our Implementation of this 

algorithm, these errors should have negligible effect. 

The Investigation of the convergence properties of two different 

versions of the backward Induction algorithm provides detailed information 

on the magnitude of this effect. Version 1 is that described above while 

version 2 is the modification obtained by replacing the term t|y|»~^A - 

Tf|y|"~'«^ in (6.6) with 
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c - t*(0)B"'^^(2t/(1-t*) * log{(1-j)/JU«})]  for y - 0, 

t|y!»"'['/(i-«'» - l) for y * 0| 

except for terms of order 0{£ ♦(ys" ' t~ )) in the case of y # 0, c Is equal 

to C, the expectation of the ethical cost accumulated over the Interval a to 

■-A In the continuous tine version. 

The computations carried out are ■Inilar to those described for 

Examples 2.1 and 2.2 in Section 4| the algorithm is executed over the 

Interval 1 < a < 100 for each grid In the sequence specified by A » A~^  for 

k - 0, 1, 2, 3, 4.  For each version, the approximation to the continuous 

time solution provided by the results for the most refined grid spacing ia 

taken as baseline and the deviation from this baseline of the approximation 

obtained with a less refined grid spacing is examined.  The results for both 

versions in the case y  - 1 are summarized in Table 26 and are qualitatively 

Bimilar to the results obtained in Examples 2.1 and 2.2.  Mote that the 

correction required to approximate the continuous tine boundary is 

underestimated in both versions.  On the other hand, while version 1 results 

in underestimates of the continuous time risk, version 2 results in 

overestimates. 

Of greater Interest in the present case is the examination of the 

behaviour of the differences between the results produced by the two 

versions as the grid spacing A decreases.  The differences in the estimates 

of both the boundary and the risk for the computations described above are 

aumnarized in Table 27.  The results clearly indicate that the differences 

in the estimates of the Bayes risk produced by the two versions, as measured 

by either the maximum or average difference, are directly proportional to A, 

the grid spacing in s.  Either version will produce excellent approximations 

to both the boundary and the risk of the cxintinuous time problem when 

reasonable grid spaclngs are employed. 
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7. SUMMARY AND COMMENTS 

We have presented a method for obtaining numerical solutions for 

optimal stopping problems Involving a stopping cost d(y,s) when the Welner 

process Y(s) In the -s (siSj) scale stops at (Y(S).S) - (y.s). The main 

Idea of this method Is to approximate the Welner process by a 

discrete time process with Independent Bernoulli Increments Z.fi , 

I.e. Z , - +1 with probability * and 

(7.1) 

^n ■ ^0 * ,iy 

\-'o- "* 

The optimal stopping procedure for a stopping cost d(ytS) associated with 

the above discrete time process may be derived by the backward Induction 

scheme with the following simple recursion equation for the optimal rislt 

d(y.s) 

(7.2) d(y,s) • m1n{d(y.s) . [d(y+fl'«.s-fi)+d(y-fl'».s-fl)]/2) ; 

the optimal stopping procedure calls for continuation when d(y,s) < d(y,s) 

and stopping otherwise. 

If the boundaries for the optimal stopping problems for continuous and 

discrete time are denoted .by y and y , then the approximation 

(7.3) y * y^t O.SA^ 
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furnishes the basis for a considerable improvement in accuracy. Unfortunately 

a single backward induction calculation provides d(y,s) only on a rectangular 

grid of points and y^ is not calculated directly and may be in error by as 

much as A*. Several alternate continuity correction methods were described to 

compensate for this difficulty. Three simple methods of estimating y are the 

crude adjusted (CA), linear adjusted (LA), and quadratic adjusted (QA). A 

fourth, more refined, method called the extrapolation method (EX) is based on 

the solution to a simple discrete time stopping problem which also provides 

the theoretical basis for (7.3). It Involves the calculation of D(y,s) - 

d(y,s) - d(y,s) at the two continuation points closest to y.(s) for each s 

on the grid. 

This approach is fundamentally unsound as a numerical method to derive 

refined approximations with accuracy to many significant digits. To increase 

accuracy by cutting A^ in half Involves Increasing the numerical work by a 

factor of 8. Without continuity corrections this would increase the accuracy 

by a factor of 2. As determined by numerous calculations on several examples, 

one obtains surprisingly good results for crude intervals A. Moreover as 

A + 0, the use of EX seems to divide the error by 3 to 4 when A 

is cut in half Indicating that doubling the accuracy requires only about 

three times as much numerical computation. 

Several variations of the basic approach are occasionally useful In 

reducing the computing effort. (1) If results are desired over a very large 

range of s values, then it was suggested that a small value of A be used for 

a range of s values, followed by a larger value of A over an overlapping 

range of s values, etc. (2) When the optimal continuation region is unbounded 

in y, a truncation procedure was described where d(y,s) need not be calculated 

fory > c if y * c Is in the continuation region for all s > s,. This method 
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depends on the probability that the (Y  .s  ) process originating at 

(c + A^.s) will  reach (c,s^) for some s^^ < s.    It Is particularly useful 

when d(y,s) » 0 for y > c and s = s^.    Moreover, a transformation of d 

(to be discussed shortly) which reduces the computational  effort and 

does not affect the optimal  stopping boundary can be applied to make 

d ■ 0 for y > c and s = S|.    (3) When d(y.s)  is symmetric in y.  It is 

possible to restrict calculations to values of y 2 0 thereby reducing 

the numerical work by half. 

The qriglnal  continuous time stopping problem has a solution which 

can be described in terms of a free boundary problem (FBP) Involving the 

heat equation.    Related to that is the fact that if one adds a solution of 

the heat equation to the stopping cost d(y.s), the optimal stopping region 

is not affected and the risk is  Increased by this solution of the heat 

equation.    This fact is a special case of the more general  fact that if 

d(Y(s),s)  is Increased by a martingale M(s),  the optimal stopping procedure 

is not affected.    These properties were used In the truncation variation 

of the proceeding paragraph.    They were used in one of the examples where 

d and d became large to reduce d and thereby attain numerical stability. 

Finally,  they were used in the Ansconbe problem with ethical cost to 

transform that problem to a stopping problem with stopping cost d(Y(s),s). 

Eight applications were considered.    Several consisted of problems 

with known solutions so that the numerical accuracy of the methods could 

be evaluated.    Several consisted of old problems of importance In the 

statistical  literature so that refined calculations of the solutions could 

be presented.    These include the sequential analysis and one-armed bandit 

problems.    Finally the Ansconbe problem with ethical cost represents a new 

problem whose solution may be regarded as having potential value In applications. 

«5 

One method of describing the optimal stopping procedure for some of 

these problems, which derive from observations on a Wiener process with 

unknown mean with a normal prior distribution, is in terms of a nominal 

significance level 3 ■ 1 - ♦(|y|s''). This description can be used to 

Interpret the optimal procedure as a sequence of repeated significance 

tests where the significance level is not held constant, but depends on 

the amount of information collected to date. 

The general approach Is easily adaptable to decomposing the optimal 

risk Into parts representing terms such as the cost of sampling, the cost 

of error, etc.    It may ilso be applied to evaluate alternative, non-optimal 

procedures although that was not done in this paper and the refinement due 

to the correction (7.3) and to the use of EX is not meaningful  then. 

Many problems originate as discrete time or discrete time and discrete 

process problems.  For example.the rectified sampling inspection problem Is 

such a problem where the fraction defective In a lot is compared to a fixed 

nunfce*- PQ.    The continuous time version of that problem is the one-armed 

bandit problem which is approximated by our approach.    But the solution of the 

latter problem is only an approximation to the solution of the sampling 

inspection problem which Involves a Bernoulli process with Increments which 

have probability PQ and 1 - PQ respectively.    The theorem which provides 

the approximation (7.3) also provides a similar approximation relating y 

and the optimal boundary for the original discrete time sampling inspection 

problem.    This approximation is discussed in Chernoff and Petkau (1976). 

The Idea of using a discrete approximation to a Wiener process problem which 

itself approximates a discrete time problem is not as circular as it seems.. 

Our numerical calculation is particularly simple partly because we can choose 

the intervals in s to suit our taste.    Moreover the Wiener process version    . 
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of the problem often allows normaHzatfons which permit us to solve many 

problems at once. 

A general purpose program designed to handle a large variety of 

these stopping problems should be capable of taking advantage of the 

special features of particular problems which might allow the necessary 

computational effort to be substantially reduced. Although It Is possible 

to write such a general purpose program, one should anticipate that 

special versions may occasionally require Intelligent Intervention to 

avoid numerical difficulties such as underflows, overflows and round off 

errors. For example, using these techniques rather careful programming 

was required to obtain a good approximation to the optimal stopping 

boundary In the problem with.stopping cost 

d(y,s) » mln(y,0) exp(-l/s)  for s s 0 , 

discussed by Bather (1983). 
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TABLE 1. ERRORS IN ESTIMATION OF BOUNDARY FOR EXAMPLE Z.5.* 

Grid Spacing 

s   y 

I    1 

4-1  2-1 

4-2  2-2 

4-3  2-3 

T"     2'" 

Ave( e ) 

Ave(lej) 

Max(|e|) 

Ave( e ) 

Ave(|e|) 

Max(lel) 

Ave( e ) 

Ave(lel) 

Max(lel) 

Ave{ e ) 

Ave(|e|). 

Max{|ei) 

Ave( e ) 

Ave(je|) 

Max(lel) 

CA 

Method 

LA QA 

1690 8 -818 

1690 209 818 

3358 813 1276 

-266 283 -91 

266 283 93 

649 466 197 

-14 209 29 

29 209 29 

113 315 55 

W 116 34 

19 116 34 

36 180 48 

11 70 23 

11 70 23 

16 96 30 

EX 

-1676 

1676 

2857 

-419 

419 

666 

-101 

104 

175 

-22 

26 

52 

7 

9 

17 

In each case, the errors sumnarlzed are e » (y - y) x lO** at s = 25H)100; 

for this range, y varies between 10 and 26. 

TABLE 2. ERRORS IN ESTIMATION OF RISK FOR EXAMPLE 2.5.* 
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Grid Spacing 

s   y Ave(e) Ave(|e|) Max(|e|) 

1    1 

4-1 2-» 

4-2 2-2 

4-3 2-5 

4-" z-" 

-587 

-lie 

-34 

-9 

2391 

576 

178 

48 

13 

9162 

1515 

531 

148 

39 

*In each case, the errors sumnarlzed are IQ-^xe = optimal risk In discrete 

time problem - optimal risk in continuous time problem at all grid points on 

the Intersections of the lines s = 25(1)100, y -  0(1)" and within the contin- 

uation region for the discrete time problem. Note that Ave(e) f  Ave(|e|) 

demonstrates that It Is not the case that the various discrete time random 

walk problems are uniformly less favourable than the continuous time problem 

In this example (In fact, these discrete versions are on the average more 

favourable here); nor Is It the case that the convergence is monotone at 

fixed (y,s) grid points. 

Note that the optimal risk for this problem is symnetric in y, always negative, 

and, for fixed s, becomes Increasingly negative as |y| Increases; Inside 

the continuation region the risk decreases from -4.0 to -10.3 at s = 25 

and from -8.0 to -25.8 at s = 100. 



TABLE 3. ERRORS IN tSTIMATION OF BOUNDARY FOR EXAMPLE 2.6.* " 
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Grid Spacing Method 

t       X CA LA QA EX 

l(-2)  1(-1) Ave( e ) -65 -1121 -357 194 

Ave(|e|) 106 1121 357 237 

• Max(|e|) 307 1529 460 436 

4-»(-2) 2-'(-1) Ave( e ) -51 -560 -197 51 

Ave(|e|) 51 560 197 71 

Max(|e|) 129 788 257 140 

4-2(-2) 2-2(-l) Ave( e ) -37 -281 -102 13 

Ave(je|) • 37 281 102 24 

Max(|e|) 64 404 138 62 

4-3(-2) 2-3(-1) Ave( e ) -17 -140 -52 3 

Ave(|e|) 17 140 52 8 

- Max(|e|) 23 204 73 20 

4-(-2) 2-'.(.i) Ave( e ) -7 -71 -26 1 
-IP ■ 

Ave{|e|) 7 71 26 3 

Max(|e|) . :  h       ... 104 38 10 

*In each case, the errors suimiarlzed are e ■= (x - x) x 10^ at t = 0(0.01)0.75; 

for this range, x varies between -0:25 and -0.51. 

*• In this and all   following tables a(-n) represents a x10'". 
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TABLE 4. ERRORS IN ESTIMATION OF RISK FOR EXAMPLE 2.6.* 

Grid Spacing 

t        X Ave(e) Ave(|e|) 

1(-2) K-l) 

4->(-2) 2-»(-1) 

4-2(-2) 2-2(.l) 

4-3(-2) 2-3(-l) 

4-«.(.2) 2-M(.,) 

658 

148 

36 

9 

2 

658 

148 

36 

9 

2 

Max(|e|) 

2126 

537 

140 

37 

7 

*In each case, the errors sunmarlzed are lO'^xe = optimal risk in discrete 

time problem - optimal risk In continuous time problem at all grid points 

on the Intersections of the lines t = 0(0.01)0.75. x = 0(-0.1)-=. and within 

the continuation region for the discrete time problem. Ave(e) = Ave(|ej) 

Indicates the various discrete time random walk problems are uniformly less 

favourable than the continuous time problem. 

Note that for the version of the problem being considered the optimal risk is 

always negative In this portion of the continuation region and, for fixed t, 

becomes increasingly negative as x decreases from 0; in this portion of 

the continuation region the risk decreases from -0.18 to -0.83 at t = 0.75 

and from -0.72 to -3.32 at t = 0. 
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TABLE 5. ACCURACY OF ADJUSTMENT (3.4) FOR EXAMPLE 2.6.* 

Grid : Spacing t 

t X Ave(e) Ave(|e 1) Max(|e|) 

1(-2) 1(-1) Raw 4607 4607 4637 

Adjusted -393 393 436 

4-M-2) 2-M-1) Raw 2344 2344 2362 

. Adjusted -156 156 178 

4-H-2) 2-q-l) Raw 1192 1192 1203 

Adjusted -58 58 69 

*In each case, the errors sumnarlzed are e = (it - x) x 10^ at t = 0(0.01)0.75; 

for this range, x varies between 0.25 and 0.51. 
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TABLE 6. DEVIATIONS IN ESTIMATION OF BOUNDARY FOR EXAMPLE 2.1. 

Grid Spacing Method 

s        y CA LA OA EX 

1            1 Ave{ d ) -1454 239 -687 -1869 

Ave(|d|) 1454 381 687 1859 

Max(|d|) 3299 880 1474 3592 

4-1        2-' Ave(  d ) -259 298 -76 -473 

Ave(|d|) 266 300 86 478 

Max(|d|) 677 540 246 919. 

4-2        2-2 Ave(  d ) -14 149 23 -Ill 

Ave(|d|) 35 152 28 127 

Max(|d|) 140 302 58 228 ' 

4-3        2-3 Ave( d ) 9 67 14 -26 , 

Ave(|d|) 12 81 15 34 

Hax(|d|) 27 128 34 55 

•The computation with grid spacing In s = 4-'', In y = 2''' provides the baseline 

for each method. In each case, the deviations sumnarized are d = (y] - y2)xl0'' 

*t  s = 25(1)100, where y2  is the approximation to the continuous time boundary 

»t baseline and yj is the approximation at the grid spacing listed (both 

computed by the same method). For this range of values of s, y varies between 

n and 31. 
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TABLE 7.  DEVIATIONS IN ESTIMATION OF BOUNDARY FOR EXAMPLE 2.].< 

Grid Spacing • - Method 

s   y CA LA QA 

1    1 Ave( d ) 435 2182 1212 

Ave(|d|) 794 2182 1212 

Max(|d|) 2222 3571 2578 

4-1   2-> Ave( d ) 234 845 428 

■  Ave{|d|) 309 845 428 

Max(|d|) 702 125 809 

4-2   2-2 Ave( d ) 117 334 164 

Ave(|d|) 124 334 164 

Max(|d|) 238 527 248 

4-3   2-3 Ave( d ) 55 166 70 

Ave(|d|) 55 166 70 

Max(|d|) 91 236 100 

4-"   2-- Ave( d ) 20 74 30 

Ave(|d|) 20 74 30 

Max{|d|) 32 T13 45 

*In each case, the deviations suninarlzed are d = (y - y^v) x lO"* at s = 25(1)100. 

where y^^  Is the approximation obtained using method EX at the grid spacing 

under consideration. For this range of s values, y varies between 11 and 31. 
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TABLE 8. DEVIATIONS IN ESTIMATION OF RISK FOR EXAMPLE 2.1.* 

Grid Spacing 

» y 

1 1 
4-1 2-1 

4-2 2-2 

4-3 2-3 

Ave(d) 

210 

-5 

-3 

Ave{|d|) Maxi|d|) 

288 

73 

20 

t 

1139 

457 

.137 

33 

*In each case,  the deviations summarized are 10^ times the differences 

between the optimal  risk In the random walk problem With the grid spacing 

listed and that with grid spacing in s = 4-''.  in y = Z''* at all grid points 

on the intersections of the lines s - 25(1)100, y = 0(1)» and within the 

continuation region for the discrete time problem with the less refined grid, 

spacing. 

Note that the optimal  risk for this problem is symmetric in y, always positive, 

and, for   fixed s, decreases as  jyj  increases;  inside the continuation region 

the risk decreases from 0.30 to 0.06 at s = 25 and from 0.17 to 0.01 at s = 100. 
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TABLE 9.    DEVIATIONS  IN ESTIMATION OF BOUNDARY FOR EXAMPLE Z.Z.* 

Grid Spacing Method 

s     y CA LA QA EX 

1     1 Ave( d ) 1107 -308 481 1227 

Ave(|dj) 1107 330 481 1227 

Max(ldj) 2417 627 870 2187 

4-1          2-> Ave( d ) 164 -310 19 314 

- Ave(|d|) 168 310 43 317 

Max(|d|) 469 510 104 475 

4-2    2-2 Ave( d ) -5 -167 -30 72 

Ave(jd|) 23 167 30 78 

Hax(|d|) 52 309 64 135 

4-»    2"3 Ave( d ) -11 -57 -16 13 

• Ave(|d|) 13 74 19 23 

- Max(|d|) 24 134 37 47 

♦The computation with grid spa.cing In s = 4"'',  in y = 2"" provides the baseline 

for each method.    In each case, the deviations sunmarlzed are d = (yi - yg) " lO"* 

at s = 25(1)100. where y2 ^s the approximation at baseline and y,  is the 

approxirtiation at the grid spacing listed (both computed by the same method). 

For this range of i values, y varies between -8 and -21. 

TABLE  10.     DEVIATIONS  IN ESTIMATION OF BOUNDARY FOR EXAMPLE 2.2.^ 
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Grid Spacing Method 

y    s CA LA QA 

r    1 Ave( d ) -196 -1594 -775 

Ave(|d|) 494 1594 775 

Max(|d|) 1441 2414 1716 

4-»   2-1 Ave( d ) -167 -698 -323 

Ave(|d|) 189 698 323 

Max(|d|) 420 987 437 

4-2      2-2 Ave( d ) -94 -313 -130 

Ave(|d|) 99 313 130 

Max(|d|) 183 458 186 

4-3    2-3 Ave( d ) -41 -144 -57 

Ave(|d|) 41 144 57 

Max(|d|) 6? 221 87 

4-"    2-* Ave( d ) -17 -75 -29 

Ave(|d|) 17 75 29 

Max(|d|) 30 109 42 

*In each    case,  the deviations summarized are d = (y - yry) x ID"* at s = 25(1)100, 

where y^jj is the approximation obtained using method EX at the    grid spacing 

under consideration.    For this range of s values, y varies between - 8 and -21. 
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TABLE 11. DEVIATIONS IN ESTIMATION OF RISK FOR EXAMPLE 2.2.* 

Grid Sr acing 

s y 

r I 

r» 2"« 

4-2  . 2-2 

4-3 2-3 

Ave(d) Ave(|d|) Max((d|) 

1205 

-22 

-10 

-3 

1474 8487 

155 420 

39 131 

8 20 

*In each case,  the deviations summarized are 10^ times the differences between 

the optimal risk In the random walk problem with the grid spacing listed and 

that with    grid spacing in s = 4"*,  in y = 2''* at all grid points on the 

Intersections of the lines s = 25(1)100, y = OC-l)— and within the contin- 

uation region for the discrete time problem with the less refined grid spacing. 

Note that for the version of the problem being considered the optimal  risk is 

always negative In this portion of the continuation region and, for fixed s, 

becomes  increasingly negative as y decreases from 0; In this portion of the 

continuation region the risk decreases  from -1.7 to -6.7 at s = 25 and from 

-3.7 to -20.8 at s = 100. 

TABLE 12.     DEVIATIONS IN ESTIMATION OF BOUNDARy FOR EXAMPLE 2.7.* 
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Grid Spacing Method 

t        X CA LA QA EX 

l(-2)    1(-1) Ave( d } -6501 523 188 1984 

Ave(|d|) 6501 523 188 1984 

Max(|d|) 9688 985 579 '5910 

4-i(-2)  2-'(-l) Ave( d ) -830 444 160 216 

Ave(|d|) 843 444 160 222 

Max(|d|) 2188 685 245 1050 

4-2(-2) Z-H-\) Ave( d ) -248 204 75 S6 

• Ave(|d|) 256 209 76 61 

Max(|d|) 938 375 138 297 

4-3(-2)  2-3(-1) Ave( d ) -55 74 28 11 

Ave(|d|) 64 91 33 1« 

Max(jd|) 313 168 62 64 

•The computation with grid spacing In t = 4"'xlO'^, In x 2""* X 10"' provides 

the baseline for each method.    In each case, the deviations suimarlzed are 

d = (X| - Xp)X10^ at t » 0.04(0.01)0.75, where X2 Is  the approximation at 

baseline and x^ Is the approximation at the grid spacing listed (both computed 

by the same method).    For this region of t values,  x varies between .16 and .35. 



TABLE 13. DEVIATIONS IN ESTIMATION OF BOUNDARY FOR EXAMPLE 2.7.* 
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Grid Spacing Method 

t        X CA LA QA 

l{-2)    1(-1) Ave( d ) -8504 -1400 -1777 

Ave{|d|) 8504 1575 1783 

Max(|d|) 13006 5410 5504 

4-i(-2)   2-M-l) Ave( d ) -1064 289 -36 

Ave(|d|) 1064 426 196 

Max(|d|) 2402 866 946 

4-2(-2)   ^-^.}) Ave( d ) -322 209 38 

Ave(jdl) 323 2SS 87 

Hax(|d|) 1042 359 254 

4-3(-2)   2-3(-1) Ave( d ) -84 124 36 

Ave{id|) 85 128 44 

Max(|dj) 395 197 69 

4-"{-2)   2--(-1) Ave{ d ) -18 61 20 

Ave(|d|) 20 51 21 

Max(|d|) 80 103 38 

*Ifi each case, the deviations summarized are d = (x - x^j^) x 10^ at 

t - 0.04(0.01)0.75, where x^j^ Is  the approximation obtained using method EX 

at the grid spacing under consideration.    For this range of t values, x varies 

between .16 and .35. 
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TABLE 14. DEVIATIONS IN ESTIMATION OF RISK FOR EXAMPLE 2.7.* 

Grid Spacing 

t       X Ave(d) Ave(|d|) 

l(-2) K-l) 

4-M-2) 2->(-l) 

4-2(-2) Z-'(-l) 

4-3{-2) Z-3(-l) 

6133 

1378 

338 

65 

6133 

1378 

338 

65 

Max{|d|) 

111700 

22643 

7560 

1006 

*In each case, the deviations summarized are 10*^ times the differences between 

the optimal risk In the random walk problem with the grid spacing listed and 

that with grid spacing In t = 4-" x lO'^, In x ' Z- x 10-' at all grid points 

on the Intersections of the lines t = 0.04(0.01)0.75, x = 0.0{0.1)». and 

within the continuation region for the discrete time problem with the less 

refined grid spacing. 

Note that for the version of the problem being considered, the optimal risk 

Is always negative In this portion of the continuation region and, for fixed 

t, becomes Increasingly negative as x Increases from 0; In this portion 

of the continuation region the risk decreases from -.03 to -.07 at t - 0.75, 

from -.15 to -.37 at t = 0.45, and from -1.57 to -2.67 at t = 0.04. 



TABLE 15. APPROXIMATION TO BOUNDARY FOR EXAMPLE 2.7. 
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t x(t) t x(t) 

0.001 0.027 0.55 0.341 

0.002 0.038 0.60 0.333 

0.005 0.059 0.65 0.321 

0.01 0.082 0.70 0.306 
0.02 0.114 0.75 0.287 

0.03 0.138 0.80 -      0.263 

0.04 0.157 0.82 0.252 

0.05 0.174 0.84 0.240 

0.06 0.188 0.86 0.226 

0.07 0.201 0.88 0.211 

0.08 0.213 0.90 0.194 

0.09 0.223 0.91 0.185 
0.10 0.233 0.92 0.175 
0.12 0.250 0.93 0.165 

0.14 0.265 0.94 0.153 
0.16 0.277 0.95 0.140 

0.18 0.289 0.96 0.126 

0.20 0.298 0.97 0.109 

0.25 0.318 0.98 0.090 

0.30 0.332 0.99 0.064 

0.35 0.341 0.995 0.045 

0.40 0.346 0.998 0.028 

0.45 0.348 0.999 0.020 

0.50 0.346 
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TABLE 16.    ERRORS IN ESTIMATION OF RISK FOR MODIFIED ANSCOMBE PROBLEM 

z = y/s*^ 

s 0 1 2 3 4 

10 ER* 

RER** 

-.6(-4) 

.2{-4) 

-.l(-3) 

.3(-4) 

102 ER -.5(-3) -.5(-3) ..2(-4) 

RER .6(-4) .4(-4) .1{-5) 

103 ER -.2(-2) -.3(-2) .4(-4) .7(-4) 

RER .8(-4) .7(-4) -.6(-6) -.7(-6) 

10" ER -.4(-2) -.l(-2) .l(-2) .2(-3) 

RER .5(-4) .8(-5) -.5{-5) -.7(-6) 

105 ER -.2{-l) -.8(-2) .3(-2) .9(-3) .2{-4) 

RER .6(-4) .2(-4) -.5(-5) -.1(-5) -.2(-7) 

10* ER -.2(-l) -.1(-1) .5{-2) .l(-2) -.5(-5) 

RER .3(-4) .1(-4) -.3(-5) -.4(-6) .l(-8) 

*ER » Error » Estimate of risk - optimal  risk 

"RER = Relative error » Error/optimal risk 
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TABLE 17.    ERRORS  IN ESTIMATES OF BOUNDARY FOR MODIFIED ANSCOMBE PROBLEM 

•Phase Last s value fly Maximum AER* Maximum ARER** 

1 1.052 .005 .00010 .004 

, 2 1.234 .010 .00025 .004 

3 1.962 .020 .00057 .002 

4 4.874 .040 .00124 .001 

S 16.522 .080 .00222 .0008 

6 63.114 . .160 .00443 .0004 

7 249.482 .320 .00564 .0003 

8 994.954 .640 .01246 .0003 

9 3,976.842 1.280 .05500 .0005 

10 15.904.394 2.560 .16643 .0007 

11 63,614.602 5.120 .50157 .001 

12 254,455.434 10.240 1.34060 .001 

13 1,017,818.762 20.480 3.29124 .001 

*AER = Absolute error = absolute value of y - y 

**ARER = Absolute relative error = absolute value of (y «■ y)/y 
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TABLE 18. ESTIMATES OF STOPPING BOUNDARY FOR SEQUENTIAL ANALYSIS PROBLEM 

t= 1/s i(s)=y(s)/s z(s)=y(s)/s'' B(s)=1-*(i(s)) 

10.00 .02499 .0079 .4968 
9.50 .02630 .0085 .4966 
9.00 .02776 .0093 .4963 
8.50 .02939 .0101 .4960 
8.00 .03123 .0110 .4956 
7.50 .03331 .0122 .4951 
7.00 .03569 .0135 .4946 
6.50 .03843 .0151 .4940 
6.00 .04163 .0170 .4932 
5.50 .04541 .0194 .4923 
5.00 .04995 .0223 .4911 
4.50 .05550 .0262 .4896 
4.00 .06243 .0312 .4875 
3.50 .07130 .0381 .4848 
3.00 .08315 .0480 .4809 
2.50 .09961 .0630 .4749 
2.00 .1240 .0877 .4651 
1.50 .1636 .1336 .4469 
1.40 .1744 .1474 .4414 
1.30 .1865 .1636 .4350 
1.20 .2004 .1830. .4274 
1.15 .2080 .1940 .4231 
1.10 .2162 .2061 .4184 
1.05 .2250 .2196 .4131 
1.00 -/ -2344 .2344 .4073 
.95 .2451 .2515 .4007 
.90 .2563 .2702 .3935 
.85 .2679 .2906 .3857 
.80 .2805 .3136 .3769 
.75 .2940 .3395 .3671 
.70 .3085 .3688 .3561 
.65 .3240 .4019 .3439 
.60 .3409 .4401 .3299 
.55 .3590 .4840 .3142 
.50 .3781 .5348 '  .2964 
.48 , .3862 .5574 .2886 
<46 .3943 .5814 .2805 
.44 .4026 .6069 .2719 
.42 .4111 .6343 .2629 
.40 .4198 .6637 .2534 
.38 .4285 .6951 .2435 
.36 .4373 .7288 .2331 
.34 .4461 .7651 .2221 
.32 .4550 .8042 s .2106 
.30 .4637 .8466 .1986 
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TABLE 18. (continued) 

t = 1/s x{s)=y(s)/s i{s)''y{%)/s** e(s)=1-»(z(s)) 

.28 .4724 .8928 .1860 

.26 .4809 .9432 .1728 

.24 .4892 .9986 .1590 

.22 .4969 1.0595 .1447 

.20 .5038 1.1264 .1300 
•   .19 .5069 1.1629 .1224 

.18 .5097 1.2013 .1148 

.17 .5121 1.2421 .1071 

.16 .5144 1.2859 .09924 

.15 .5159 1.3319 .09144 

.14 .5170 1.3818 .08351 

.13 .5175 1.4352 .07562 

.12 .5170 1.4926 .06778 

.11 .5158 1.5552 .05995 

.10 .5134 1.6234 .05225 

.09 .5096 1.6985 .04471 

.08 .5039 1.7816 .03741 

.07 .4961 1.8751 .03039 

.06 .4855 1.9819 .02375 

.05 .4707 2.1052 .01764 

.04 .4507 2.2534 .01212 

.03 .4222 2.4376 .007392 

.02 .3797 2.6848 •    .003629 

.01 .3074 3.0738 .001057 
9 -3 .2969 3.1294 .8759 -3 
8 -3 
7 -3 

.2853 3.1903 .7107 -3 

.2726 3.2583 .5605 -3 
.4273 -3 6 -3 .2583 3.3345 

5 -3 .2420 3.4231 .3096 -3 
4 -3 
3 -3 

.2231 3.5276 .2097 -3 

.2004 3.6581 .1271  -3 
2 -3 .1714 3.8329 .6334 -4 
1  -3 .1300 4.1118 .1964 -4 

.1650 -4 9 -4 .1246 4.1518 
8 -4 
7 -4 

.1187 4.1964 .1357 -4 

.1123 4.2461 .1088 -4 
6 -4 .1054 4.3028 .8440 -5 
5 -4 .09767 4.3681 .6271  -5 
4 -4 .08895 4.4473 .4352 -5 
3 -4 .07874 4.5462 .2733 -5 
2 -4 .06620 4.6811 .1428 -5 
1 -4 .04902 4.9020 .4749(-6 

TABLE 18.    (continued) 

t = 1/s 

9(-5) 
8(-5) 
7(-5 
6(-5) 
5(-5) 
4(-5 
3(-5 
2(-5 
l(-5 
9(-6 
8{-6 
7(-6 
6(-6 
5(-6 n n 

x(s)=y(s)/s z(s)=y(s)/s'' e(s)=l-*(z(s)) 

.04681 4.9346 

.04446 4.9709 

.04193 5.0113 

.03918 5.0578 

.03614 5.1113 

.03274 5.1773 

.02881 5.2603 

.02403 5.3742 

.01759 5.5638 

.01678 5.5917 

.01590 5.6227 

.01497 5.6581 

.01396 5.6986 

.01285 5.7457 

.01161 5.8031 

.01018 5.8759 

.008453 5.9770 

.006146 6.1456 

.4021(-6) 

.3337(-6 

.2707(-6 

.2124(-6 

.1602(-6 

.1128-6) 

.7204(-7) 

.3854{-7) 

.1323(-7 

.1127(-7 

.9428-8 

.7675(-8 

.6056(-8) 

.4590(-8) 

.3266-8) 

.2110(-8) 

.n40{-8 

.3999(-9) 



TABLE 19. ESTIMATES OF BAYES RISK FOR SEQUENTIAL ANALYSIS PROBLEM* 

'o " "Q/^C 

'o ' '^'o 0 0o5 1.0 1.3 2.0 3.0 4.0 5,0 

5.00 .1759 

2.00 .2667 

1.00 .3414 

.30 .3876 - 

.20 .3765 .3183 .1828 

.10 .3322 .2910 .1934 .9099(-1) 

.09 .2775 .2468 .1734 .9498(-1) .3737(-1) 

.03 .2072 .1856 .1338 .7816{-1) .3705(-1) 

.01 .1614 • 1447 .1048 .6201(-1) .3052(-1) .3763(-2) 
5(-3) .1234 .1106 .8001(-1) .4730(-l) .2343(-1) .3697(-2) 
2(-3) .a468(- .7576(-1)^ .5447(-1) • 3187(-1) .1559(-1) .2642(-2) 
1(-3) .62S4(- .S611(-1) .4011(-1) .2321(-1) .ni7(-1) .1858(-2) .2094(-3) 
5<-4) .4619(- .4118(-1) .2926(-1) .1674(-1) .7902(-2) .1253(-2) .1833(-3; 
2(-4) .3040(- .2704(-1) .1907(-1) .1076(-1) .49S4(-2) .7210(-3) .1167(-3) 
1(-4) .2199(. .1953<-1) .1371(-1) .7660(-2) .3466(-2) .4698(-3) .7563(-4) 
5(-5) .1583(- .1405(-1) .9819(-2) .5441(-2) .2425(-2) .30S6(-3) .4697(-4) .6465(-5) 
2(-5) .1020(- .9032(-2) .6286(-2) .34SU-2) .1512(-2) .1743(-3) .2409(-4) ,4874(-5) 
K-S) .7283(- -2 .6446(-2) .4475(-2) .2444(-2) .1060(-2) .1149(-3) .1429(-4) .3309(-5) 
5(-6) .5191 (. -2 .4591(-2) ,3180(-2) .1729(-2) .7432(-3) .7639(-4) .8430(-5) .2092(-5) 
2(-6) .3308(- ■2 .2924(-2) .2021(-2) .1094(-2) .4660(-3) .4517(-4) .4185(-5) .1071(-5) 
1(-6) .2349(- ■2 .2075(-2) .1432(-2) .7733(-3) .3278(-3) .3066(-4) .2480(-5) .6247(-6) 

•The quantity  tabulated  is  BR ,. /,.2/3   1/3  2/3 ,   , ,, 
Bayes   ris)cA       c       o '     «  E(d(Y(S),sJ}  - 

TABLE   20.      ESTIMATES   OP   BAXES   EXPECTED   COST  OP  SAMPLING   FOR  SEQUENTIAL   ANALYSIS   PROBLEM" 

'o ■ "Q/'O 

^0 ■ '/'o 0 0.5 1.0 1.5 2.0 3.0 4.0 5.0 

5.00 .2501(-2) 

3.00 .1457(-1) 

1.00 .4931 (-1) 

.30 .1079 ■• 

.20 .1575 .1166 .23a9(-1) 

.10 .1606 .1345 .7380(-1) .1243(-1) ■ ■■  ■ 

.OS .1459 .1275 .a386(-1) .3804(-t) .4990(-2) 

.02 .1166 .1040 .7382(-1) .4141(-1) .1738(-1) 

.01 .9410(-1) .8437(-1) .6101(-r) .3Sa3(-l) .1710(-1) .5592(-3) 
5(-3) .7391(-1) .6636(-1) .4824(-1) .2a73(-1) .1429(-1) .1805(-2) 
2<-3) .5209(-1) .4673(-1) .33a8(-1) .2013(-1) .1007(-1) .1698(-2) 
1(-3) .3927(-n .3517(-1) .2537(-1) .1494(-1) .7384(-2) .1293(-2) .5924(-4) 
5(-4) .2925(-1) .2614(-1) .1874(-1) .1090(-1) .5293(-2) .9086(-3) .I063(-3) 
2(-4) .1951(-1) .1739(-1) .1236(-1) .7081(-2) .3347(-2) .535a(-3) .a427(-4) 
1(-4) .1423(-1) ' .1266(-1) .8949(-2) •5066(-2) .2347(-2) .3509(-3) .SaS5(-4) 
5(-5) .1031(-1) .9163(-2) .6442(-2) .3610(-2) .1642(-2) .2278(-3) .3787(-4) .2344(-5) 
2(-5) .668S(-2) .5929(-2) .4144(-2) .2295(-2) .1022(-2) .1286(-3) .2000(-4) .3204(-5) 
1(-5) .4793(-2) .4246(-2) .295a(-2) .1627(-2) .7151(-3) •8390(-4) .1200(-4) .2469(-5) 
5(-6) .3426(-2) .3033(-2) .2106(-2) .11521-2) .5006(-3) .5512(-4) .7106(-5) .1659(-5) 
2(-6) .2190(-2) .1937(-2) .1341(-2) .7291(-3) .3132(-3) .3208(-4) .3518(-5) .8997(-6) 
l(-6) .155a(-2) .1377(-2) .9S18(-3) .5155(-3) .2200(-3) .2153(-4) .2068(-5) .5382(-6) 

•The  quantity  tabulated  la   ECS  -  Bayes  expected  cost  of  samplingA^^^c^^^o^^^ -  E(s'') 
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TABLE 21.    ESTIMATES OF STOPPING BOUNDARY FOR ONE-ARMED BANDIT PROBLEM 

t =■ 1/s x(s)=y(s)/s z(s)=y(s)/s*     6(s) = 4.(r(s)) 

.9995 

.999 

.995 

.99 

.98 

.97 

.96 

.95 

.94 

.93 

.92 

.91 

.90 

.88 

.86 

.84 

.82 

.80 

.78 

.76 

.74 

.72 

.70 

.68 

.66 

.64 

.62 

.60 

.58 

.56 

.54 

.52 

.50 

.48 

.46 

.44 

.42 

.40 

.38 
,36 
.34 
.32 
.30 
.28 
.26 
.24 
,22 
.20 

-.01430 
-.02026 
-.04524 
-.06391 
-.09022 
-.1103 
-.1272 
-.1420 
-.1554 
-.1675 
-. 1789 
-.1894 
-.1993 
-.2177 
-.2344 
-.2498 
-.2640 
-.2775 
-.2900 
-.3017 
-.3129 
-.3234 
-.3333 
-.3428 
-.3517 
-.3602 
-.3683 
-.3760 
-.3832 
-.3901 
-.3965 
-.4026 
-.4086 
-.4138 
.4187 
.4231 
.4272 
.4309 
.4340 
.4367 
.4388 
.4405 
.4415 
.4419 
.4416 
.4404 
.4383 
.4354 

-.0143 
-.0203 
-.0454 
-.0642 
-.0911 
-.1120 
-.1298 
-.1456 
-.1603 
-.1737 
-.1865 
-.1986 
-.2101 
-.2321 
-.2528 
-.2725 
-.2915 
-.3103 
-.3284 
-.3461 
-.3637 
-.3811 
-.3984 
-.4157 
-.4329 
-.4503 
-.4678 
-.4854 
-.5032 
-.5212 
-.5396 
-.5583 
-.5778 
-.5973 
-.6173 
-.6379 
-.6592 
-.6813 
-.7041 
-.7278 
-.7525 
-.7787 
-.8061 
-.8351 
-.8660 
.8990 
.9345 
.9736 

.4943 

.4919 

.4819 

.4744 

.4637 

.4554 

.4484 

.4421 

.4363 

.4310 

.4260 
-4213 
.4168 
.4082 
.4002 
.3926 
.3853 
.3782 
.3713 
.3646 
.3580 
.3516 
.3452 
.3388 
.3325 
.3262 
.3200 
.3137 
.3074 
.3011 
.2947 
.2883 
.2817 
.2752 
.2685 
.2618 
.2549 
.2479 
.2407 
.2334 
.2259 
.2181 
.2101 

.2018 

.1932 

.1843 

.1750 

.1651 
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TABLE 21. (continued) 

1/s x{s)=y(s)/s z(s)=y(s)/s'^ B(s)=*(z(s)) 

2(-3 
1(-3 

.18 

.16 

.14 

.12 

.10 

.09 

.08 

.07 

.06 

.05 

.04 

.03 

.02 
,01 

9(-3) n 
Sill 
4(-3) 
3(-3) 

-3) 

li:'!! 
7(-4) 

n n 
9(-5 
8(-5 
7(-5 
6(-5 
5(-5 
4(-5 

9(-6) n 
6(-6 
5(-6 
4(-6 
3(-6 
2(-6) 
l(-6) 

-.4311 
-.4252 
-.4176 
-.4076 
-.3946 
-.3866 
-.3773 
-.3665 
-.3540 
-.3387 
-.3198 
-.2956 
-.2626 
-.2108- 
-.2035 
-.1956 
-.1869 
-.1772 
-.1662 
-.1534 
-.1381 
-.1188 
-.09090 
-.08720 
-.08321 
-.07892 
-.07420 
-.06895 
-.06297 
-.05597 
-.04730 
.03533 
.03378 
.03213 
,03034 
.02838 
.02625 
.02383 
.02103 
.01762 
.01297 

.01238 

.01175 

.01107 

.01033 

.009526 

.00862P 

.007570 

.006307 

.004608 

-1.0160 
-1.0630 
-1.1161 
-1.1767 
-1.2477 
-1.2886 
-1.3340 
-1.3854 
-1.4450 
-1.5146 
-1.5988 
-1.7069 
-1.8569 
-2.1081 
-2.1454 
-2.1868 
-2.2336 
-2.2871 
-2.3500 
-2.4258 
-2.5222 
-2.6554 
-2.8744 

9067 
9420 

-2.9829 
-3.0293 
-3.0836 
-3.1487 
-3.2316 
-3.3445 
-3.5327 
-3.5605 
-3.5917 
-3.6263 
-3.6640 
-3.7116 
-3.7680 
-3.8397 
-3.9388 
-4,1013 

-4.1257 
-4,1532 
-4.1839 
-4.2190 
-4.2602 
-4.3101 
-4.3706 
-4.4597 
-4.6077 

.1548 

.1439 
,1322 
.1197 
.1061 
.09877 
.09110 
.08296 
.07423 
.06494 
.05493 
.04392 
.03166 
.01751 
.01596 
.01438 
.01275 
.01109 
.009388 
.007638 
.005832 
.003961 
.002024 
.001826 
.001630 
.001428 
.001226 
.001023 
.8201(-3) 
.6155(-3) 
.4122(-3) 
.2057(-3) 
.1851(-3) 
,1643(-3 
.1438(-3) 
.1242-3) 
.1030(-3) 
.8230-4) 
.6162(-4) 
.4095(-4) 
,2055(-4) 

.1849(-4) 

.1640(-4) 

.1434(-4) 

.1228-4 

.1022(-4) 

.8163(-5) 

.6200(-5) 
,4107(-5) 
.2038(-5) 



TABLE 22.     ESTIMATES OP   BAYES   EXPECTED  PAYOFF  FOR ONE-ARMED   BANDIT PROBLEM 

*o ■ "Q/'O 

«o ■ V»o 0 -0.5 -1.0 -1.5 -2.0 -3.0 -4.0 

.50 ^1774 .0035 
^^°™' 

.20 .1059(1) .2390 , 

.10 .2769(1) .8971 .0839 

.05 .6420(1) .2479(1) .5175 

.02 .1784(2) .7773(1) .2375(1) .3003 

.01 .3728(2) .1708(2) .5961(1) .1249 .0268 
5(-3) .7658(2) .3613(2) .1362(2) .3592(1) .3915 
2(-3) .1953(3) .9447(2) .3758(2) .1150(2) .2219(1) 
1(-3) .3940(3) .1925(3) .7838(2) .2538(2) .5867(1) 
5(-4) .7920(3) .3892(3) .1607(3) .5387(2) .1370(2) .0233 
2(-4) .1987(4) .9812(3) .4093(3) .1406(3) .3824(2) .6137 
1(-4) .3981(4) .1969(4) .8245(3) .2861(3) .7992(2) .2089(1) 
S(-5) .7969(4) .3946(4) .1657(4) .5783(3) .1640(3) .5440(1) 
2(-5) .1994(5) .9878(4) .4154(4) .1456(4) .4176(3) .1628(2) 
1(-5) .3988(5) .1977(5) .8319(4) .2920(4) .8409(3) .3482(2) .0493 S(-6) .7977(5) .3955(5) .1665(5) .5350(4) .1689(4) .7247(2) .4370 2(-6) .1995(6) .9890(5) .4165(5) .1464(5) .4232(4) •1860(3) .2117(1) 

.3989(6) .1978(6) .3330(5) .2929(5) .3477(4) .3765(3) .5354(1) 
_^ 

The quantity   tabulated   ia   BEP -  Bayea   expected  payoff/o^ .V2 
;E[d'(Y(S),S)} - d'(y   ,3   )], 

 TABLE  23.     ESTIMATES   OF  BAYES   EXPECTHJ  SAMPLE SIZE  FOR  ONE-ARMED   BANDIT  PR08LH1 

*o ■ "o/^o 

'o-'/'o 0 -0.5 -1.0 -1.5 -2.0 -3.0 -4.0 

.50 .5786 .0835 

.20 .2217(1) .1047(1) 

.10 .4851(1) .2637(1) .7097 

.05 .1001(2) .5782(1) .2256(1) 

.02 .2528(2) .1513(2) .6942(1) .1884(1) 

.01 .5052(2) .3064(2) .1480(2) .5065(1) .5210 
5(-3) .1008(3) .6157(2) .3055(2) .1154(2) .2588(1) 
2(-3) .2512(3) .1542(3) .7795(2) .3125(2) .9084(1) 
l(-3) .5016(3) .3086(3) .1571(3) .5434(2) .2018(2) 
5(-4) .1002(4) .6172(3) .3155(3) .1308(3) .4257(2) .5929 2(-4) 

1(-4) 

S(-5) 

2(-5) 

l(-5) 

5(-6) 

2(-6) 

1(-6) 

.2502(4) .1543(4) .7913(3) .3308(3) .1103(3) .4387(1) 

.5003(4) .3086(4) .1584(4) .6643(3) .2236(3) .1094(2) 

.1000(5) .6172(4) .3171(4) .1332(4) .4507(3) .2417(2) 

.2501(5) .1543(5) .7931(4) .3336(4) .1132(4) .6433(2) 

.5001(5) 

.1000(6) 

.2500(6) 

.5000(6) 

.3086(5) 

.6171(5) 

.1543(6) 

.3086(6) 

.1586(5) 

.3173(5) 

.7935(5) 

.1587(6) 

.6677(4) 

.1336(5) 

.3340(5) 

.6681(5) 

.2270(4) 

.4544(4) 

.1137(5) 

.2274(5) 

.1314(3) 

.2659(3) 

.6696(3) 

.1344(4) 

.1032(1) 

.4101(1) 

.1334(2) 

.2907(2) 

•The quantity tabulated  is EN - Bayes   expected sample  size/o' ''c" - ^ot^'^-' '-3-']. - 
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TABLE   24. STOPPING   BOUMDARIES   B-yCt)   FOR   ANSCOMBE'S   PROBLEH  WITH   ETHICAL COST* 

t Y=0.0 Y-0.1 Y-t.O Y-10.0 

U-6) 1.03(-6) 1.13(-6) 2.05(-6) 1.12(-5) 
2(-6) 2.05(-6) 2.25(-6) 4.10{-6) 2.25(-5) 
3(-6) 3.07(-6) 3.38(-6) 6.13(-6) 3.37(-5) 
4(-6) 4.091-6) 4.50(-6) .  8.17(-6) 4.50(-5) 
5(-6) 5.11(-6) 5.62(-6) 1.02(-5) S.63(-5) 
6(-6) 6.14(-6) 6.75(-6) 1.23(-5) 6.76(-5) 
7(-6) 7.15(-6) 7.87(-6) 1.43(-5) 7.88(-5) 
e(-6) 8.17(-6) 8.98(-6) 1.64(-5) 9.02(-5) 
9(-6) 9.20(-6) 1.01(-5) 1.84(-5) 1.01(-4) 
1(-5) 1.02{-5) 1.12(-5) 2.05(-5) 1.13(-4) 
2(-5) 2.04(-5) 2.25(-5) 4.09(-5) 2.26(-4) 
3{-5) 3.07(-5> 3.38(-5) 6.15(-5) 3.39(-4) 
4(-5) 4.09(-5) 4.50(-5) 8.20(-5) 4.53(-4) 
5(-5) 5.12(-5) 5.65{-5) 1.03(-4) 5.65(-4) 
6(-5) 6.16(-5) 6.78(-5) 1.23(-4) 6.79(-4) 
7 (-5) 7.20(-5) 7.91(-5) l.44(-4) 7.92(-4) 
8{-5) 8.22(-5) 9.04(-5) 1.65(-4) 9.05(-4) 
9t-5) 9.25(-5) 1.02(-4) 1.B5(-4) 0.00102 
1(-4) 1.03<-4) 1.13(-4) 2.06(-4) 0.00113 
2(-4) 2.07(-4) 2.27(-4) 4.13(-4) 0.00223 
3(-4) 3.n(-4) 3.42(-4) 6.21(-4) 0.00332 
4(-4) 4.16(-4) 4.56(-4) 8.28(-4) 0.00437 
5(-4) 5.20(-4) S.71(-4) 0.00103 0.00540 
6{-4) 6.25(-4) 6.86(-4) 0.00124 0.00642 
7(-4) 7.28(-4) 8.01(-4) 0.00144 0.00741 
8(-4) 8.34(-4) 9.15(-4) 0.00165 0.00839 
9(-4) 9.39(-4) 0.00103 0.00185 0.00935 
0.001 0.00104 0.00114 0.00206 0.0103 
0.002 0.00208 0.00228 0.00405 0.0191 
0.003 0.00311 0.00340 0.00599 0.0269 
0.004 0.00412 0.00451 0.00786 O.O340 
0.005 0.00513 0.00561 0.00969 0.0405 
0.006 0.00612 0.00668 0.0115 0.0466 
0.007 0.00710 0.00775 0.0132 0.0523 
0.008 0.00807 0.00880 0.0149 0.0576 
10.009 0.00903 0.00984 0.0166 0.0626 
0.01 0.00998 0.0109 0.0182 0.0674 
0.02 0.0190 0.0206 0.0332 0.1060 
0.03 0.0274 0.0295 0.0462 0.1339 
0.04 0.0353 0.0378 0.0578 0.1560 
0.05 0.0427 0.0457 0.0684 0.1741 
0.06 0.0498 0.0531 0.0783 0.1896 
0.07 0.0566 0.0602 0.0876 0.2034 
0.08 0.0631 0.0670 0.0962 0.2153 
0.09 0.0694 0.0736 0.1043 0.2260 
0.10 0.0754 0.0799 0.11 20 0.2357 
0.11 0.0813 0.0860 0.1193 0.2445 
0.12 0.0870 0.0918 0.1263 0.2525 
0.13 0.0926 0.0976 0.1330 0.2600 
0.14 0.0980 0.1032 0.1394 0.2669 
0.15 0.1033 0.1085 0.1456 0.2735 

t  - currently available  proportion of   total  potential   infornatlon 
?    "  noodnal  significance   level 

TABLE  24        (continued) 
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t Y-O.O Y-0.1 Y-1.0 Y-10.0 

0.16 0.1085 0.1138 0.15J5 0.2795 
0.17 0.1135 0.1190 0.1573 0.2852 
0.18 0.1184 0.1240 0.1629 0,2906 
0,19 0.1233 0.1290 0.1683 0.2958 
0.20 0.1280 0,1339 0.1736 0.i006 
0.22 0.1374 0,1434 0.1839 0,3100 
0.24 0.1463 0.1525 0.1935 0.3183 
0.26 0.1550 0.1612 0.2026 0.3259 
0.28 0.1635 0.1698 0.2114 0.3330 
0.30 0.1718 0.1781 0.2198 0.3396 
0.32 0.1798 0.1862 0.2279 0.3458 
0.34 0.1877 0.1941 0.2358 0.3516 
0.36 0.1955 0.2019 0.2434 0.3571 
0.38 0.2031 0.2095 0.2508 0.3623 
0.40 0.2106 0.2170 0.2579 0.3672 
0.42 0.2180 0.2243 0.2650 0.3720 
0.44 0.2253 0.2316 0.2718 0.3765 
0.46 0.2325 0.2388 0.2786 0.3809 
0.48 0.2397 0,2459 0.2852 0.3852 
0.50 0.2468 0.2529 0.2917 0.3893 
0.52 0.2540 0.2601 0.2982 0.3934 
0.54 0.2610 0.2670 0.3045 0.3974 
0.56 0.2680 0.2740 0,3108 0.4012 
0.58 0.2751 0,2809 0.3170 0.4049 
0.60 0.2821 0.2878 0.3231 0.4085 
0.62 0.2891 0.2947 0.3292 0.4120 
0.64 0.2961 0,3016 0.3353 0.4155 
0.66 0.3032 0,3086 0.3414 0.4190 
0.68 0.3104 0,3156 0.3475 0.4224 
0.70 0.3176 0.3227 0.3536 0.4258 
0.72 0.3249 0.3298 0.3598 0.4291 
0.74 0.3324 0,3371 0,3660 0.4325 
0.76 0.3399 0,3445 0.3723 0.4359 
0.78 0.3477 0,3521 0.3787 0.4393 
0.80 0.3556 0,3599 0.3853 0.4428 
0.S2 0.3639 0.3680 0.3921 0.4463 
0.84 0.3725 0.3763 0.3990 0.4500 
0.86 0.3814 0.3849 0.4063 0.4537 
0.88 0.3908 0.3941 0.4139 0.4576 
0.90 0.4009 0,4039 0.4219 0.4617 . 
0.92 0.4118 0,4145 0.4307 0.4660 
0.94 0.4241 0,4264 0.4403 0.4708 
0*9S 0.4309 0.4330 0.4458 0.4735 
0.9C 0.4383 0.4403 0.4517 0.4765 
0.97 0.4467 0,4484 0.4583 0.4797 
0.98 0.4566 0.4580 0.4660 0.4835 
0.99 0.4694 0.4704 0.4761 0.4884 
0.995 0.4784 0.4791 0.4831 0.4918 
0.999 0.4904 0,4907 0.4924 0.4963 
0.9995 0.4932 0.4935 0.4947 0.4975 
1.0000 0.5000 0.5000 0.5000 0.5000 



t„ •f 
0.0 

BR     (PR) EN 
0.5 

Z 

1.0 

DURES   I 

0 

N   ANSCOMBE'S 

1.5 

PROBLEM   WITH   ETHICAL COST 

2.0 3  0 0 

1(-1) 0.0 
0.1 

1«78(.61) 

1.83(.60) 
1.76 
1.69 

1.62(.57) 

1.66(.56) 
1.43 
1.37 

BR      (PR) EN BR     (PR) 

'o " ^0^' 

EH BR     (PR) EN BR     (PR)        EH 

1.0 2.1S(.53) 1.29 1.99(.49) .99 'o 
10.0 3.S4(,34) .47 3.18(.24) .23 c    - proportion Of   total  information in prior 

5(-2) 0.0 
0.1 

2.S5(.63) 
2.63(.63) 

2.91 
2.80 

2.34(.61) 
2.42(.60) 

2.47 

2.36 
BR -  Bayea   risk/a^a'^ 

n 
1.0 3.20(.S6) 2.15 2.99(.54) 1.76 

10.0 5.81(.40) .82 5.45(.35) .54 
PR ■ proportion of   Sayes   tisk due   to the 

oxperiaental  phase 
2(-2) 0.0 

0.1 
1.0 

10.0 

3.80(.S6) 
3.94(.66) 
4.99(.60) 

10.20(.46) 

5.31 
S.11 
3.93 
1.57 

3.S2(.65) 
3.65(.65) 
4.89(.60) 
9.77(.4S) 

4.61 
4.42 
3.35 
1.21 

2.78(.62) 
2.89(.61) 
3.76(.55) 
7.25(.29) 

2.96 
2.82 
2.01 

.41 

BN -  Bayea  expected  sanpie  a ize/0^a-^ 

1(-2) 0.0 4.95(.6a) 8.11 4.60(.68) 7.11 3.6a(.66) 4.75 

1.0 
5.1S(.68) 7.80 4.a0(.67) 6.83 3.85(,65) 4.54 6.70(.63) 6.01 6.31(.63) 5.21 5.16(.60) 3.34 10.0 14.32(.51) 2.46 14.27(.50) 2.01 11.42(.42) .98 

5 (-3) 0.0 
0.1 
1.0 

10.0 

6.31(.70) 

6.59(.70) 
8.77(.65) 

20.a2(.S4) 

12.19 
11.73 
9.05 
3.76 

5^7(.70) 
6.14(.69) 
8.27(.65) 

20.06(.S4) 

10.75 
10.34 
7.92 
3.18 

4.73(.69) 
4.97(.6a) 
6.82(.64) 

16.65(.50) 

7.34 
7.04 
5.28 
1.82 

3.30(.65) 
3.4a(.64) 
4.a0(.59) 

10.33(.31) 

3.80 

3.62 
2.56 

.49 

■;*''     . 

2(-3) 0.0 
0.1 
1.0 

10.0 

8.45(.72) 
8.86(.72) 

12.12(.6a) 
31.21(.59) 

20.53 
19.76 
15.27 
6.45 

7.a6(.72) 
8.25(.72) 

11.41(.68) 
30.00(.S9) 

18.17 
17.48 
13.47 
5.58 

6.35(.72) 
6.70(.71) 
9.46(.6a) 

2S.45(.5a) 

12.59 
12.09 
9.21 
3.55 

4.S1(,70) 
4.78(.70) 
6.a4(.66) 

17.69(.50) 

6.79 

6.50 
4.81 
1.49 

2.ai{,6S) 
2.9a(.64) 

4.19(.5a) 
a.35(.13) 

2.77 

2.63 
1.79 

.13 

TABLE 25   (continued) 

 °J2 0^ i_:0 us 2_^ 
^0 T BR      (PR) EN BR      (PR)        EN BR      (PR) EM BR      (PR)        EN BR      (PR) 

3.0 
BR      (PR)      £2) 

l(-3)     0.0 10.34(.74) 30.15 9.61(.74) 26.72 7.77(.74) 18.61 5.55(.73) 10.18 3.54(.70)     4.34 
0.1 10.a8(.73) 29.03 10.13(.73) 25.72 a.22(.73) 17.90 5.89(.73) 9.77 3.76(.69)     4.14 
1.0 15.17(.70) 22.47 14.26(.70) 19.87 11.a0(.70) 13.72 8.60(.69) 7.37 5.49(.65)      2.98 

10.0 41.25(.62) 9.59 39.54(.62) 3.38 33.69(.62) 5.54 24.39(.58) 2.64 13.66(.41)         .69 

5(-4)     0.0 12.S0(.7S) 44.00 11.60(.75) 39.01 9.:fe(.76) 27.21 6.68(.75) 14.98 4.32(.74) 6.51 

?*« ll'lVrl^l *^-" 12-'6(-75) 37.56 9.92(.75) 26,19 7.12(.75) 14.40 4.61(.73) 6.24 
1.0 18.71(.72) 32.85 17.S5(.72) 29.08 14.47(.73) 20.20 10.5a(.72) 11.00 6.90(.70) 4.65 

10.0 53.42(.64) 14.15 51.03(.65) 12.44 43.46(.65) 3.41 32.12(.63) 4.29 !9.63(.S4)      1.48 

2(-4)     0,0 15,77(.77) 71.90 14.61(.77) 63,74 11.73(.78) 44.47 3,35(.7a) 24.51 5.44(.77) 10.74 
0.1 16.S9(.77) 69.26 15.49(.77) 61,40 12,47(.77) 42.83 8.92(.77) 23,59 5.a3(.77) 10,33 
1.0 24,17(.74) 53,81 22,60(,74) 47,68 18,53(,75) 33.21 13,51(,75) 18,22 8.93(.74)      7.90 

10.0 73.13(.68) 23.43 69.51(,68) 20.69 58.39(,69) 14,23 44,00(.68) 7.58 28,S2(,64)      3.02 

l(-4)     0,0 18,57(.78) 103,73 17,19(.7a) 91.92 13,74(.79) 64,05 9,74(,79) 35,24 6,35(,79) 15.43 
0,1 19.71(.78) 99.95 ia,26(,78) 88.57 14.64(,79) 61.72 10.42(.79) 33.95 6.81(   79) 14  86 
1.0 28.94(.76) 77.78 27,00(.76) 68.91 22.01(.77) 47.99 1S.98(.77) 26.36 10.60(.77) 11*49 

10.0 91.05(.7O) 34.11 86.22(.70) 30.17 72.62(.71) 20.89 54.30(.71) 11.30 36.00(.69)      4.72 

5(-5)     0.0 21.67(.79) 149.08 20.02(.80)132.05 15.93(.80) 91.88 11.24(.81) 50.41 7.31(.81) 21.99        2.67(.75)2   25 
0.1 23,05(.79) 143.68 21 .31 ( ,79)127.27 17.OK,80) 88,56 12,04(,80) 48,59 7.86( ,81 ) 21.19        2.86(.74)   2*16 
1,0 34.28(.77) 111.98 31.90(.77) 99.19 25.86(.78) 69.03 18.66(.79) 37.88 12.38(.79) 16.51        4.3a(.70)    1*61 

10.0 111.73(.72) 49.44 105.42(.72) 43.77 88.18(.73) 30.40 65.74(.74) 16.58 44.09(.73) 7.10     12.IK.45)      *42 



TABLB  25    (eontlnu»d) 

0.0 
BR     (PR) 

0.5 1 .0. 1 .5 
EN BR     (PR)        EN BR     (PR) EN BR      (PR) EN 

2.0 
BR     (PR)        EN 

3.0 
BR    (PR)    at 

2(-5)     0.0 26.24(.81)   239.73 
0.1 27.97(.80)   231.10 
1.0 42.25(.79)   180,44 

10.0 143.62(.74)      80.30 

24.19(.81)212.20 
25.81(.81)204.57 
39.20(.79)159.75 

134.90(.74)   71.11 

19.13(.81)147.31 
20.46(.81)142.02 
31.53(.80)110.97 

111.75(.75)   49.44 

13.38(.e2) 80.45 
14.36(.82) 77.58 
22.54(.81) 60.68 
82.67(.76) 27.07 

8.66(.83) 34.84 
9.32(.83) 33.61 
14.89(.81) 26.33 
55.75(.76) 11.72 

3.30(.79) 3.55 
3.55(.79) 3.43 
5.61(.76) 2.66 
18.40(.e2) 1.01 

l(-5)  0.0 30.06(.82) 342.35 
0.1 32.09(.81) 330.09 
1.0 48.98{.80) 258.05 

10.0 171.31(.75) 115.45 

27.66(.82)302.87 
29.56(.82)292.03 
45.34(.80)228.34 
160.38(.76) 99.65 

21.78(.82)209.94 
23.33(.82)202.44 
36.25(.81)158.40 
131.e7(.77) 71.05 

15.13(.83)114.31 
16.26(.83)110.25 
25.72(.82) 86.38 
96.83(.78) 38.89 

9.74(.84) 49.22 
10.50(.e4) 47.49 
16.90(.83) 37.30 
65.25(.78) 16.87 

3.78(.81) 4.93 
4.08(.81) 4.76 
6.56(.79) 3.75 

23.32(.69) 1.60 

5(-6)  0.0   34.19(.83) 487.99 
0.1   36.56(.82) 470.57 
1.0   56.33(.81) 368.27 
10.0 202.24(.77) 165.53 

2{-6)  0.0   40.15{.84) 777.63 
0.1   43.01(.83) 749.99 
1.0   67.02(.82) 587.63 

10.0 248.20(.79) 265.49 

i(-6)  0.0   45.03(.84)1104.72 
0.1   48.31(.84)1065.57 
1.0   75.86(.83) 835.48 

10.0 286.93(.80) 378.69 

31.41(.83)431.54 
33.62(.82)416.15 
52.04(.81)325.75 
188.77(.77)146.52 

36.81(.84)687.32 
39.47(.84)662.91 
61.75(.82)519.50 
230.80(.79)234.89 

41.23(.84)976.11 
44.26(.84)941.53 
69.77(.83)738.36 

266.13(.80)334.91 

24.62(.83)298.64 
26.40(.83)288.02 
41.37(.82)225.61 
154.06(.78)101.73 

28.68(.84)474.90 
30.81(.84)458.08 
48.74(.83)359.21 
186.59(,80)162.83 

31.98(.85)673.67 
34.39(.85)649.86 
54.78(.84)509.92 

213.69(.81)231 .84 

16.98(.84)162.10 
18.27(.84)156.36 
29.13(.83)122.66 
112.19(.80) 55.57 

19.61(.85)256.91 
21.13(.85)247.86 
33.9e(.84)194.62 
134.32(.S1) 88.68 

21.72(.86)363.63 
23.42(.86)350.83 
37.87(.85)275.62 
152.46(.82)125.92 

10.86(.85) 69.41 
11.73(.85) 66.98 
19.02(.B4) 52.68 
75.34(.80) 24.06 

12.43(.86)109.29 
13.44(.86)105.47 
21.97(.85) 83.03 
89.52(.82) 38.19 

13.67(.87)154.07 
14.79(.87)148.70 
24.31(.86)117.09 
100.92(.83) 53.99 

4.27(.83) 6.77 
4.62(.83) 6.55 
7.53(.81) 5.20 

2B.37(.74) 2.37 

4.94(.85)10.31 
5.35(.85) 9.97 
8.83(.84) 7.95 
35.20(.79) 3.78 

5.44(.86)14.18 
5.91(.86)13.71 
9.83(.85)10.94 
40.49(.81) 5.27 
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Fig.  2.    Bayes  Ejq>ected Cost of Sampling for Sequential Analysis Problem 
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A log^jj(ECS) Fig. 6.  Bayes Expected Cost of Sampling for Sequential Analysis Problem 

ECS = Bayes expected cost of sampling/k^''^c^^^o^'^"^ 
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a A EN Fig-   10.   Bayes   Expected Sample  Sizes   for One-Azned Bemdit Problem 
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3 ^ log,„(EN+ 1) Fig. 14.  Bayes E;q>ected Sample Sizes for Oner-Armed Bandit Problem 
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FigJ.8.  Bayes Risks at z = o for Anscombe's Problem with Ethical Cost 

^0 = "0^% 

t = proportion of total information in prior 
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Fig.19. Bayes Expected Sample Sizes at z = 0 for Anscombe's Problem with Ethical Cost 
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A    EN Fig. 22.   Bayes  Expected  Sample   Sizes  at  t     =" lo'^   fc 

Anscombe's  Problem with  Ethical  Cost 
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^0 ' proportion of total information in prior 
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Fig.23.  Decomposition of Bayes Risks at t » lo"^ for 

Anscombe's Problem with Ethical Cost 
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PR = proportion of Bayes risk due to the experimental phase 
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